
Katherine Kostereva | Burley Kawasaki

NO-CODE

The No-code Playbook is a vendor-agnostic guide that empowers teams to
deliver business applications of any complexity with no-code.

The Playbook provides guidance on how to organize efficient IT and business
collaboration and deliver game-changing results leveraging the potential of the

no-code approach while staying compliant with governance requirements.

All rights reserved

2022

NO-CODE
PLAYBOOK

The No-Code Playbook

Content

Chapter 1 – Introduction to the Playbook 6

Chapter 2 – What is No-code ... 12

Chapter 3 – Principles of No-code Development 24

Chapter 4 – No-code Roles and Responsibilities 32

Chapter 5 – Application Matrix ... 44

Chapter 6 – Introduction to Design 56

Chapter 7 – Stage 1: Business Use Case 66

Chapter 8 – Stage 2: Options Analysis 80

Chapter 9 – Stage 3: Design and Prototyping 90

Chapter 10 – Stage 4: Project Assignment 102

INTRODUCTION
TO NO-CODE

DESIGN

Chapter 11 – Introduction to Go-Live 110

Chapter 12 – Stage 5: Prototype-to-MVP 118

Chapter 13 – Stage 6: Feedback Loop 128

Chapter 14 – Stage 7: Governance Checks 136

Chapter 15 – Stage 8: First Release .. 146

Chapter 16 – Introduction to Everyday Delivery 154

Chapter 17 – Stage 9: Feedback Collection 162

Chapter 18 – Stage 10: Incremental Improvements 170

Chapter 19 – Stage 11: Everyday Delivery 176

Chapter 20 – Stage 12: Application Audit 182

Chapter 21 – Building Your Center of Excellence 190

Chapter 22 – Making No-code Your Strategy 202

Acknowledgements .. 210

GO-LIVE

EVERYDAY
DELIVERY

FINAL
TOUCHES

The No-Code Playbook

“Change is the only
constant in life”

Heraclitus

7

Introduction to the Playbook 01

01Introduction
 to the
 Playbook

INTRODUCTION
TO NO-CODE

The No-Code Playbook

Introduction
The advent of digital technologies has vastly increased the pace of change in our business
environment. New business models and competitive strategies that once took years or decades
to emerge are now being conceived and launched in weeks or months. Put simply — your
ability to compete, thrive, and grow increasingly depends on keeping pace with the latest digital
innovations. Your business depends on it. Your employees embrace it. Your customers demand
it. If you don’t find innovative ways to adopt new digital solutions to enable your business
processes, you’re at a significant competitive disadvantage against those who will.

Yet this highlights a growing challenge — the supply
of software talent is not unlimited.
The gap between supply and demand of software developers is increasing. According to analyst
firm IDC1, the overall developer population was 26.2 million in 2020, roughly half of whom
were full-time developers. This may seem like a lot, but businesses of all sizes now want to use
software as a competitive advantage, leading to an explosion in the demand for new digital apps.
As a result, the supply of developers is being vastly outstripped by the market demand for new
software applications. This puts enormous pressure on IT, which is hard-pressed to keep up with
the backlog of requested projects for new business applications.

Even for those businesses lucky enough to already have access to larger teams of software
developers in-house, it’s increasingly difficult to retain top talent. The lure of “work-from-
anywhere” opportunities and increasing competition for scarce software roles have contributed to
the “Great Resignation,” with millions of developers leaving their jobs to seek new employment
options elsewhere. Professional software developers are increasingly finding new careers and
career models altogether (including freelancing and gig economy marketplaces) that make it
even more difficult for traditional enterprise businesses to compete for software talent.

Given the developer talent shortages, many businesses now worry about the impact on their
ability to innovate. In a survey of more than 1,000 C-suite executives, 61% said they believed
access to developer talent is a threat to the success of their business — an even bigger threat than
lack of access to capital, according to the research conducted by Harris Poll on behalf of Stripe2.
Furthermore, they found that developers on average spend 42% of their time simply maintaining
and debugging existing code, further reducing their ability to put energy into sources of new
software innovation or differentiation. This all results in immense pressure on businesses to find
and retain software developer talent.

1 Worldwide Developer Census, 2020: Infrastructure Developers Dominate Part-Time Developer Segment
2 The Developer Coefficient: Software engineering efficiency and its $3 trillion impact on global GDP

9

Introduction to the Playbook 01

At the same time, business teams are now discovering they don’t need to wait weeks and months
(or perhaps years) for their development requests to be addressed by IT. They are adopting a
“Do-It-Yourself ” approach to software development and speeding up application development
by building apps themselves using no-code. By democratizing the ability to develop software
using visual and intuitive “drag-and-drop” tools, no-code enables a new range of nondeveloper
roles within an organization to take on the building of software applications. While IT and
software developers are still critically important for certain types of apps, the use of no-code
has now significantly increased the talent pool potential inside most organizations by allowing
employees within the business itself to take on or assist in development tasks.

As you might imagine, the business world has responded positively and rapidly to the powerful
“no-code” industry shift — it’s the answer to much pent-up demand by business functions for
new and alternative solutions for building software applications. However, as with any shift,
it can be challenging to embrace it efficiently if you don’t know exactly how or where to start.
That’s where this No-code Playbook comes in!

This Playbook provides practical, no-nonsense
guidance for developing enterprise business
applications. While this book may interest
readers building other types of applications,
most of the considerations and practices are
optimized for the needs of enterprise app
development. It is a hands-on guide intended
for anyone embarking on or navigating
through a no-code journey. It’s an overview of
the end-to-end lifecycle for those who want to
learn tips and tricks for success.

It is written as a guide for business and IT
stakeholders who are looking for real-world
guidance in building no-code enterprise
applications and scaling the no-code
approach in-house. The playbook is especially
targeted at IT/digital and operations
executives (VP and C-level leaders) as well as
practitioners delivering automation projects.

About This Book

What is the Playbook
about?

For whom did we
write this book?

The No-Code Playbook

1 234 5
678910
11121314
17181920
21 22

 The Playbook is structured in three parts for ease of reading and understanding:

How is the Playbook structured?

The Introduction Chapters
(Chapters 1-5) initiate readers into the
foundational concepts used throughout
the Playbook. They are important to
read as a primer, and we advise starting
here. Even if you have some exposure
to no-code, it’s worth skimming to
make sure you haven’t missed some
important principles.

The No-code Lifecycle Chapters
are organized around the key
phases of a no-code project. First,
the Design Phase (Chapters 6-10)
covers planning for your project;
followed by the Go-Live Phase
(Chapters 11-15), which addresses
building and releasing your initial app.
Finally, the Everyday Delivery Phase
(Chapters 16-20) covers the process of
ongoing enhancements and evolution
of your no-code app.

The Concluding Chapters
(Chapters 21-22) close with more
advanced topics and tie together our
overall discussion of no-code from
throughout the Playbook.

11

Introduction to the Playbook 01

Software development is in the
midst of the no-code revolution,
democratizing the process for
knowledge workers and, for the
first time, allowing nondevelopers
to build apps. However, if you’re
new to no-code development, it can
seem intimidating, and you may not
know where to start. This Playbook
provides all the guidance and
practices you will need to get off to a
fast start and successfully deliver on
your project outcomes.

However, the no-code space is still
new and sometimes overhyped.
Understanding what it really is —
and what it isn’t — is key to
realizing the expected benefits and
successfully starting your journey.
We’ll discuss what it is in the next
chapter.

Final
Takeaways

01Introduction to the Playbook

The No-Code Playbook

“Software is eating
the world”

Marc Andreessen

13

Business Use Case 07

02What is
No-code

INTRODUCTION
TO NO-CODE

The No-Code Playbook

Introduction

When entrepreneur and investor Marc Andreessen famously said, “software is eating the
world,” he was referring to how certain emerging innovators like Netflix, Amazon, Pixar,
Spotify, and Pandora were quickly transforming whole industries. These disruptive software
companies were leveraging the power of software to completely rewire business models,
establish new rules for competitive landscapes, and fundamentally change how customers think
about consuming goods and services. Think about the societal impact of on-demand video
streaming, same-day/next-day package delivery, or anywhere/anytime music streaming. These
software pioneers were disrupting and forever changing customer expectations about daily life.

Yet, when we look at today’s business landscape, the impact of software has expanded far
beyond Andreessen’s earliest predictions. Now, it’s recognized that software isn’t restricted to a
few special disruptive startups — with many firmly believing that every business is a software
business. This democratized view is embraced by businesses of all sizes and across all industries
and sectors. Organizations, big and small, are using software to enable sweeping digital
transformation initiatives. They’ve been able to put software at the heart of their business
strategy because of dramatic advances in cloud computing, which has significantly lowered the
barriers and costs of adopting software-enabled innovation.

The cloud has enabled an explosion of applications and services, with some predictions
estimating that there will soon be as many digital apps and services created with cloud-native
approaches as developed in the last 40 years combined. The majority of these new apps will
address industry-specific digital transformation scenarios and result in new competitive
requirements being defined. This increased appetite for apps takes IT well past its breaking
point — it’s just not possible to simply “work harder” and expect IT to deliver independently
on these many requests for apps. So, it’s no surprise that the trend toward DIY software
development (as discussed in the last chapter) has emerged in response to these demands.

15

What is No-code 02

The Journey
Toward No-code

In many ways, the trend toward DIY software development began as part of the rapid
expansion of Software as a Service (SaaS) over the past decade. The popularity of SaaS is
clear within the business function as a way to realize faster access and use of applications.
Unlike traditional custom software development, with SaaS, you can instantly and
immediately provision software on-demand. Furthermore, it removes the complexity and risk
of hosting, managing, and updating your software. That complexity is still there, but it’s now
the responsibility of the SaaS provider to take care of these details and ensure the continued
reliability of the app. For many businesses, this value proposition is compelling and has led to
the rapid explosion of SaaS to address the needs of nearly every business process or industry
vertical.

However, while compelling in terms of speed, availability, and maintainability, packaged
SaaS may not always be the appropriate answer as your business may not be satisfied with
shrink-wrapped, “off-the-shelf ” solutions. To compete, the business function often finds that
it needs more highly customized and tailored business processes. In those instances,
a SaaS application may be insufficient (just as everyone may not want to live in a cookie-
cutter house identical to their neighbors). Every business that deploys SaaS apps will look
pretty much the same to their customers, so businesses that are seeking to differentiate
themselves are usually focused on finding new sources of technology innovation.

Think of no-code in many ways as offering the “best of both worlds” between SaaS and
custom software development. It provides a balanced approach offering the speed and
simplicity of SaaS applications but with the ability to customize with many of the same
benefits of custom-built software.

The No-Code Playbook

So, what exactly is no-code? Simply put, no-code platforms allow nondevelopers to participate
in the application development process through visual drag-and-drop tools. Users can visually
compose the forms, workflows, and data needed to build an application without understanding
a programming language or having formal software development training. This has the potential
to vastly expand the supply of talent by enabling millions of nondevelopers with the ability to
address application backlogs. It still requires deep knowledge of the business process or domain
as well as the ability to think analytically and logically about problem-solving, but no-code
development does not require formal training in software development.

Now, we should acknowledge that it’s a bit of a misnomer to say there’s no code — a lot of
code had to be written to build the no-code platform! However, it’s the responsibility of the
no-code platform vendor to write and maintain this code and to keep up with the latest trends
in innovation. This is much like the responsibility of the SaaS provider to maintain all of the
software they host and manage for you “as a service.”

Finally, as we define no-code, it’s important to note that we will focus on using no-code for
developing enterprise applications. While the techniques of no-code abstractions can apply to
a wide variety of areas — including building marketing websites, setting up e-commerce sites,
defining business intelligence (BI)/business analytics dashboards, or training machine learning
(ML) models — those types of solutions are not the focus of this Playbook. We’ve focused
instead on the use and benefits that no-code provides to meet the application backlog needs
of the enterprise. This addresses many of the most common enterprise use cases ranging from
back-office applications, customer-facing applications, workflow apps, digital forms, employee
collaboration apps, and more.

Defining No-code

17

What is No-code 02

Benefits of No-code
So, let’s dive into some of the benefits of no-code. As it turns out, there are many reasons
to be excited about its use:

Faster to start

As noted earlier, by taking ownership of parts
or all of the development, the business can
avoid some of the usual delays when waiting
for IT development resources to be assigned.
This allows projects to be started more quickly.

Faster to finish

Once you’ve started your project, the
productivity advantage of visual assembly
also results in faster development cycles. In a
recent study, some 71% of respondents cited
faster app development as one of the major
reasons for choosing no-code tools1.

Improved alignment

It’s common for IT to spend months or years
working on a development project without
realizing that the goals or market conditions
may have changed. Shorter development
cycles and visual language of no-code
development enable easier and continuous
collaboration and alignment between the
business function and IT.

Increased agility

The business function can also respond to
change more readily, whether it be to react to
new competition or capture new opportunities
in the market. Furthermore, the business
function can also pivot its strategy quickly
because of the flexibility no-code development
provides for ideating innovations. You will
have the agility to rapidly introduce new
strategies, new products, or new services.

1 No Code Census 2020

The No-Code Playbook

Like most myths, this is grounded in some reality. The idea of using visual tools for software
development has indeed been around for a long time. The principles behind visual computer-
aided software engineering (CASE) tools were first explored as early as the 1970s. However,
while the principles of visual drag-and-drop software assembly have been around for a while, the
vast majority of early attempts still involved relatively specialized and complex development and
architectural knowledge to set up, maintain, and use these toolsets — and they were fairly complex
to apply in practice. This all contributed to low usage, except for a brave set of early adopters.

As a result, business users resorted to applying other “homegrown” tools, such as spreadsheet
macros, scripting languages, or Microsoft Access databases. While these apps were relatively
easier to build, they nearly always began to show performance issues, expose security flaws, or
were difficult to maintain as they became more broadly used. Only recently (since the mid-2000s)
has the combination of ubiquitous cloud computing, advances in software platforms, and broad
adoption of modern application programming interface (API) protocols begun to truly address
many of the historical challenges of software engineering in a manner that is enterprise ready. So,
while the promise of no-code may have been around for decades, the act of making it simple, easy,
and scalable to enterprise needs has been a relatively recent development.

Debunking the No-code Myths

MYTH #1:
NO-CODE IS MERELY VENDOR HYPE AND ISN’T NEW

MYTH #2:
NO-CODE IS GOING TO PUT SOFTWARE DEVELOPERS OUT
OF WORK AND REDUCE SOFTWARE JOBS

However, while the business value is real, the benefits can be overhyped similar to any emerging
innovation — and it can be difficult to separate fact from fiction. So, let’s explore some of the
myths and discuss what’s real and what’s not.

This is demonstrably untrue. If you’re a software developer reading this, don’t worry — your job is
safe! To help keep pace with the increasing appetite for new digital apps, it’s essential to include
the business function and nontraditional developers in the development process. Given the
projected explosion of cloud-native digital apps and services mentioned previously, it will take all
of the DIY developers (and more) to just help keep up with meeting this insatiable app demand.

Also, there are plenty of app scenarios that will still require software developers to work with
no-code teams (as part of fusion teams that will be outlined in more detail in Chapter 4) because
the innovation around new software development languages and frameworks will not slow down.

19

What is No-code 02

MYTH #3:
LOW-CODE AND NO-CODE ARE SIMPLY VARIATIONS
OF THE SAME APPROACH

This is untrue, but many articles often mention the terms “low-code/no-code” in a single breath,
leading readers to believe they are simply different flavors of the same approach. However, while
they may both use visual abstractions to reduce the complexity of software development, low-code
and no-code are two distinct platforms offering different benefits and are designed for different
users.

Low-code platforms have evolved from previous concepts of “Rapid Application Development,”
and they don’t attempt to replace programming fully. Instead, they lower the amount of code
that must be written (hence the name). Typically, this means that the user of low-code is still a
developer of some type, albeit perhaps a more junior one. One of the major benefits of low-code
is the ability to make less experienced developers productive easily — they can quickly adopt a
standard framework and tools that avoid many of the common pitfalls or complexities that one
can face with professional development. However, at the core, there is an inherent learning curve
and complexity to low-code, as it still essentially offers a value proposition to IT that enables the
development of custom software. Knowledge of proper application design and architecture and
some lightweight coding knowledge (typically, JavaScript or some scripting language) is needed to
build a low-code app.

No-code platforms, in contrast, are intended to be used by nondevelopers, which means that
they attempt to fully remove the need for coding when building apps. No-code users typically sit
outside of IT, usually inside a business unit or functional team, which will be explored in greater
depth in Chapter 4. As such, the benefit of the no-code platform is that it speaks the language
of the nondeveloper — typically focusing on allowing the no-code creator to model the industry
domain (e.g., objects or rules) and business process (e.g., forms, workflows) using familiar terms
and visual models. There can be a learning curve with the tools — as there is with any new
software — but users do not need to learn any scripting or programming languages to finish
building the application.

Given the differences in target users and the expectations of programming knowledge, this means
that platforms tend to focus on either low-code or no-code, but not both.

Software developers will always be needed to push the boundaries of innovation because they are
the ones who explore advancements and create the development frameworks or libraries before
they are released as standardized components of no-code tools. Typically, there is an adoption
and maturation cycle, where development approaches get tested and matured first by software
developers until market demand is established. At that point, they will usually be offered as
mainstream, prebuilt no-code components.

The No-Code Playbook

MYTH #4:
NO-CODE WILL GET OUT OF
CONTROL (PROMOTING SHADOW IT)
AND SHOULD BE STOPPED

This is very untrue. However, given the software
development shortage and a significant backlog of
apps unmet by IT, it’s understandable that IT would
worry that the business function may charge ahead
with building apps that may be completely insecure,
noncompliant, unreliable, and risk data loss or leaks. It’s
also a common fear that the explosion of apps built with
no-code platforms may result in inconsistencies and
wasted investments and create a nightmare to update
and maintain.

However, as the saying goes — “if you can’t beat them,
join them” — and this is one fight that IT will likely
lose if it tries to police the use of innovation. Rather
than fighting the business function of building new
apps, no-code platforms offer solutions for building
apps while simultaneously implementing controls and
governance to ensure proper use. Modern generations of
no-code platforms offer the full range of governance and
reporting capabilities needed to ensure that apps will
have the ability to be monitored for compliance, security,
and maintainability. By giving a standard set of tools for
building apps that are business-friendly, it encourages
the use of a standard platform that is “blessed” by IT and
that can be consistently governed.

So, this myth would be true if your use of no-code is not
properly managed, but we’ll provide the right no-code
methodology steps as well as checks and balances to
ensure proper governance, which will be covered in more
depth in later chapters. This whole Playbook, in fact, is
aimed at enabling the enterprise to embed secure
no-code development processes into their standard
practices and governance models and to help IT and the
business function collaborate more effectively together.

21

What is No-code 02

MYTH #5:
NO-CODE IS ONLY FOR SIMPLISTIC APPS, YOU NEED SOFTWARE
DEVELOPERS FOR MISSION-CRITICAL APPS

MYTH #6:
NO-CODE PROJECTS FOLLOW THE SAME APPROACH AS
TRADITIONAL SOFTWARE DEVELOPMENT

No-code platforms indeed result in lowering the cost of building apps, which means that many
lightweight app scenarios, especially ones that might not have been previously considered
because of scarce development talent, can now be justified. It’s also true that the speed and lower
costs of app building can result in greater exploration or ideation activities. This often results in
building opportunistic apps to experiment with new ideas. These apps may start out simple to
test viability and business value quickly.

However, not all mission-critical scenarios demand professional developers. An application’s
level of business criticality has more to do with the selection of the business process and domain.
No-code apps can be used to automate business and mission-critical processes. Suppose that
the mission-critical app relies on systems of record (and most do). In that case, it may be that
software developers are involved in the project to help establish some of the initial APIs and
data integrations or to set up some of the more sophisticated components. But this doesn’t
preclude business stakeholders from building or maintaining significant parts of the app (we will
explore more on this idea of combined teams of business and software developers in Chapter 4).

While no-code definitely should apply some learnings from traditional software development,
such as Agile or DevOps practices, it would be a mistake to simply treat no-code the same as
other ways of development. It’s important to tailor the development practices to take advantage
of the unique strengths of no-code platforms, which intentionally insulate and abstract you
from many details that can trip you up with traditional development. Furthermore, the fact that
no-code brings nondevelopers more directly into the app-building process also means that you
should expect a different set of skill sets and backgrounds to be part of a no-code team.

Tailoring the methodology used for projects is a key first step, and we’ll discuss this further in
Chapter 6 when we present the No-code Methodology Framework. This no-code methodology
is a scalable model that allows no-code technology to be made available to a much larger
population of knowledge workers. The framework will give you the confidence to bet on this
approach.

The No-Code Playbook

MYTH #7:
NO-CODE PROJECTS CAN’T BE
COMBINED WITH TRADITIONAL
SOFTWARE DEVELOPMENT

There’s a myth that no-code projects are
“closed” and somehow conflict with the use of
traditional software development techniques.
Some believe that a no-code approach
constrains you to only using no-code tools
and, therefore, may not be suitable for more
complex types of enterprise applications.
However, as outlined above, no-code
development can address a wide spectrum of
application types, from simple to mission-
critical. The fusion team approach, that we will
discuss in Chapter 4, allows participants with
different skills and from different domains to
distribute tasks and collaborate on building
and launching apps. Fusion teams include
both no-code creators and software developers
and represent a very efficient and synergetic
way of delivering enterprise-grade applications
using no-code.

23

What is No-code 02

If you don’t find innovative ways
to leverage software to enable
your business processes, you’re at a
significant competitive disadvantage
against those who will.

There is a lot of hype about no-code
development in the industry, but
the benefits are real. Understanding
the reality of no-code is essential to
ensuring successful outcomes and
return on investment.

Regardless of the hype, the
opportunities that no-code
development presents are exciting!
Before we dive in, though, let’s
discuss some of the essential
principles of no-code development
that every practitioner should
understand.

Final
Takeaways

02What is No-code

The No-Code Playbook

“The things best to know
are first principles and
causes, but these things
are perhaps the most
difficult for men to grasp,
for they are farthest
removed from the
senses”

Aristotle

25

Options Analysis 08

“The things best to know
are first principles and
causes, but these things
are perhaps the most
difficult for men to grasp,
for they are farthest
removed from the
senses”

Aristotle

03Principles
 of No-code
Development

INTRODUCTION
TO NO-CODE

The No-Code Playbook

We’ll cover a lot of ground in this Playbook
to make sure you understand no-code
strategies, how to organize for success, what
methodologies to follow, etc. However, before
we get into these details, let’s step back and
examine the “first principles” of no-code
development. First principles are essential and,
as observed by Aristotle, they are sometimes
the most difficult concepts to grasp. It’s easy
for the busy reader of this Playbook to get so
immersed in the “how” of no-code that we
forget to first understand the “why.” So, we are
going to begin with a discussion of the three
core principles of no-code development:

These three principles are the foundation
for the rest of the Playbook. The No-code
Lifecycle that we’ll be detailing from here
on out will build upon these core principles.
So, it’s important to address them first as
everything else will extend from there.

Principle #1

Principle #2

Principle #3

Use no-code to gather the requirements
and prototype on the fly.

Everything that can be developed with no-code,
should be developed with no-code.

Deliver to end users as fast as you can.

27

Principles of No-code Development 03

This first principle is about streamlining the upfront stages of the software development lifecycle
that precede actual development. In traditional software projects, the requirements collection
and Design Phase usually account for a big time and effort investment.

Part of the reason why custom software projects take significant effort and time is because of the
sheer amount of documentation that must typically be created (and reviewed) by both business
and technical stakeholders, and this work is time-consuming and complex. These documents can
often be fairly technical and use specialized notations to support custom development because
they are meant to facilitate the translation from the original business intent down into detailed,
lower-level concepts (ultimately being translated into lines of code by developers later in the
software lifecycle). The sheer volume of documentation can also result in “losing the forest for
the trees,” making it easy to obscure the overall understanding of the application and overlook
important gaps or missed requirements.

Also, the need to produce large amounts of documentation in traditional custom development
often introduces costly defects due to translation errors. A typical custom software development
lifecycle involves multiple people in each stage. It starts with a business analyst whose job is to
meet with the business and document the business requirements. These requirements are then
translated by a solution architect to design the overall solution and then translated again by
developers to create detailed specifications. Finally, they’re translated one last time by testers
who develop testing plans to ensure the software aligns with the requirements. There is a
risk of introducing errors into the documents at every stage of the translation process. Errors
introduced early in the process — while gathering business requirements for example — create
exponential waste because each subsequent stage develops materials based on the early error.

No-code development takes a very different approach. In contrast, using the no-code tools to
capture the requirements and design is inherently a more efficient and accurate process. Each of
the major elements of the functional specification can be described visually, such as capturing
the design of user interface (UI) form layouts, business process flows, and business logic. Using
no-code tools is a highly efficient way to capture the specification and
facilitate a more direct and effective way to review and gather feedback

Principle #1
USE NO-CODE
TO GATHER THE
REQUIREMENTS AND
PROTOTYPE ON THE FLY

The No-Code Playbook

The second principle is about minimizing the complexity of your
overall solution architecture by adopting a primary architecture of
no-code. While there are many options available for designing
your overall architecture, pursuing too many options can introduce
unnecessary complexity — just because one can choose from many
options does not mean that one should! Also, teams can fall often into
the behavior of sticking with what they already know. Companies with
heavy expertise in software development tend to overuse code and
apply it everywhere as it’s a learned behavior that is difficult to unlearn.
In contrast, the goal of the no-code approach should be to break
this cycle and use coding only as needed as a part of the fusion team
approach.

from stakeholders and end users. Business stakeholders do not have
to be technology literate — they can be shown working prototypes of
the no-code application very early in the lifecycle, making it easy for
them to understand, navigate, and provide feedback to the no-code
development team. This improves the efficiency of the process and
results in higher quality feedback.

Finally, all of the time spent during these no-code activities does not
result in “throwaway” documentation. As you use the no-code platform
to build your prototype, you are creating both a specification and the
working application. This results in greater efficiency and productivity.
It also means that as you change and iterate on the underlying
model, the specification and app stay synchronized throughout the
lifecycle. This is a huge advantage over having to maintain both the
specifications and the application code and keep them updated in
tandem.

Principle #2
EVERYTHING THAT
CAN BE DEVELOPED
WITH NO-CODE,
SHOULD BE
DEVELOPED WITH
NO-CODE

29

Principles of No-code Development 03

Simplicity is good. Sometimes there is a temptation to identify many
possible technical alternatives in the solution approach in the quest
for completeness. However, understand that every time you introduce
more options and custom code, it comes with an inherently higher
cost of longer-term maintenance and support. Over time, it becomes
more difficult for developers to understand the original design choices.
When new developers join, it will take them longer to review the
original design specifications and solution components if they’re built
using multiple programming tools or languages. They’ll also need to
understand more layers in the overall solution architecture. While
this may have seemed advantageous to the trained software architect
who initially designed the solution, it can make the overall updating
and evolution of the app more costly and complex. There are countless
technology solutions that are so complex that only the original
developers fully understand the solution. As any company with an aging
workforce will tell you, losing the original knowledge of a solution
sometimes prevents you from making future changes out of fear of
breaking it.

Betting on a no-code approach across your application gives you a more
unified and streamlined architecture that will ultimately be simpler and
easier to maintain and support. New no-code creators will have a faster
onboarding time as they come up to speed on the application. Your
no-code team will also be more self-sufficient because they are able to
evolve and support the application themselves — they don’t need to
worry about finding specialized skill sets or depending on IT to provide
development support. This ultimately reduces the total cost of ownership
and accelerates your ability to change and evolve the application.

Note: this principle should not be taken to an extreme to mean that we
are recommending against any use of third-party software or custom-
developed components! That is not the case, it’s just important to have
a clear and rational decision framework for anything that is added to
the solution. We’ll present such a framework later in Chapter 8 when
we discuss the Options Analysis stage of the methodology, which helps
guide your selections based on your requirements. We’re recommending
that you take the simplest approach possible by striving to make no-code
the primary underlying architecture.

The No-Code Playbook

The third and final principle is about speed — and avoiding the trap of
aiming for perfection. Classic software development methodologies have
often attempted to maximize end user value by stuffing as many features as
possible into the first release. This is partly driven by stakeholders’ honest
desire to “have it all,” but it is sometimes also driven by concerns about the
timeliness of getting to the next update. If you’re concerned that the next
release may take weeks or months, then you’ll push hard to sneak all you
can into the first release.

In contrast, no-code does not wait for perfection all at once but instead
realizes it over time. No-code aims to release features quickly to the end
user — even if it is a very tight and minimal solution. The market and
competition move quickly, and it’s better to release something impactful,
relevant, and timely — even if it’s a highly-targeted subset of the scope —
than it is to delay and try to take on a massive set of functionality all at
once. This will be discussed during the Design and Go-Live Phases of
the lifecycle.

Also, while it’s important to deliver value to the user, it doesn’t have to
be done all at once. Instead, choose the minimum possible scope that
will unlock the business value, then continue to keep adding incremental
features to end users quickly in small updates. This will continue to move
you closer to the original longer-term strategic vision with the advantage
of providing more adaptability (you can evolve and course correct with
every incremental step). This approach also usually results in more satisfied
and engaged stakeholders as they will see your commitment to rapidly
responding to feedback. Ironically, this will make stakeholders better at
prioritization, and they will be less anxious about deferring items in the
backlog as they build confidence that it will not be a long wait for the next
rounds of updates. This approach is referred to as “Everyday Delivery” and
will be further outlined in the Playbook.

Principle #3
DELIVER TO
END USERS AS
FAST AS YOU
CAN

31

Principles of No-code Development 03

It’s critical to understand the
principles of no-code development
and embrace them to shape the way
you approach development activities.
These principles have inspired and
shaped the no-code methodology
that we will explain throughout the
Playbook. Take time to internalize
them before launching into the rest
of the no-code development.

No-code development requires
thinking differently about the roles
and personas that are part of the
process. Let’s dive in and explore
what a no-code team looks like.

Final
Takeaways

Principles of No-code Development 03

The No-Code Playbook

“Great things in business are
never done by one person.
They’re done by a team of
people.”

Steve Jobs

33

Business Use Case 07

No-code
Roles and
Responsibilities

“Great things in business are
never done by one person.
They’re done by a team of
people.”

Steve Jobs

04

INTRODUCTION
TO NO-CODE

The No-Code Playbook

Building software — even building
software using a no-code platform —
typically requires a diverse set of
individuals and skills, all working
together to achieve the goal. A single
person could perform the smallest
no-code projects but, for most
applications, it requires assembling a
team. Some of these team contributors
may be full-time, but a lot may be part-
time as people in the business function
are often wearing multiple hats. So, it’s
important to be clear and focused about
what roles you need and what their
responsibilities will be. This allows you
to set clear expectations and secure any
needed resources.

There is also a range of skill
requirements based on varying levels
of application complexity. You might
be building a simple app for capturing
suggestions or a mission-critical app
that the business function depends
on for automating its most important
processes. Most likely, it will lie
somewhere in between. As you look at
the different types of apps, you’ll face
choices for how to organize your team
to support different levels of complexity.

We’ll explore both topics in this
chapter. First, we’ll walk through
the three primary approaches for
organizing no-code teams and
discuss what they look like from an
organizational perspective. Next,
we’ll outline the key roles that are
part of these teams on a no-code
development project, and we’ll explore
how these “Delivery Models” and roles
tie together to support effective and
multidisciplinary delivery.

No-code
Delivery
Models
Let’s start by discussing some of the common
delivery models for organizing your teams.
A delivery model is simply a suggested
configuration for a no-code team structure
designed to support different levels of
complexity and scale when building
no-code applications. We will introduce three
distinct delivery models in this section. Note,
the process of actually picking which delivery
model is right for your application should be
guided by a decision framework called the
“Application Matrix,” which will be outlined
in the following chapter. For now, we will
simply define the models.

35

No-code Roles and Responsibilities 04

DIY delivery

The simplest delivery model is what we’ll
refer to as the “Do-It-Yourself " approach,
where all the primary roles of the no-code
project are contained within a team sitting
inside a single business unit. This team
typically has a single overall project sponsor
overseeing them. This makes the business
function highly autonomous and in charge
of its own destiny as they do not depend on
groups in IT or other organizations to form
and execute a no-code project. There may be
just a single no-code team. There may also
be multiple teams in organizations that have
a high level of no-code maturity and are
building no-code apps for a large number
of business units. The size of the team is less
important than where the participants come
from. In this model, all the roles should
come from the same functional business unit
that sponsors the app.

Considerations

•	 This is the simplest model for organization
and execution, leading to efficiency and
streamlined operations.

•	 	Team roles may be easier to resource and
operationalize by the business function
because of reduced dependencies.

•	 Offers a clear definition of accountability
and priorities within a single organization
unit.

•	 	May be constrained by the availability of
skills and people in that group.

•	 	Not having access to more technical
development skills may lead to roadblocks.

•	 	It will be challenging to embed a new
no‑code application into a legacy ecosystem
without proper technical skills.

The No-Code Playbook

Center of Excellence (CoE)

The next delivery model is the “Center of
Excellence,” or CoE. The CoE is typically
owned and led by a single overall cross-
functional CoE leader. It has skilled
knowledge workers whose mission is to
maximize efficiency through consistent
definition and adoption of best practices
for no-code development across the
organization. This approach typically does not
get formed immediately but emerges after
the organization has started building some
no-code expertise from multiple projects. It
then becomes attractive to standardize and
centralize some no-code expertise and skills to
leverage across teams. When this happens, it’s
often part of an overall digital transformation
initiative. As the CoE is formed, it may or
may not have direct full-time staff. Sometimes,
the CoE leader can have direct employees
working under their supervision or they can
operate in a matrix environment working with
no-code creators from other business units.

Resourcing a no-code project using the CoE
model results in a matrix organizational
model. Most of the key roles will still
be driven by the business unit, but some
specialized no-code roles may sit within
the CoE. However, even the CoE resources
will typically have a dotted-line reporting
relationship with the overall business unit
owner as a part of the development project.

Considerations

•	 Makes the most efficient use of scarce
resources across the organization
by providing team members with a
centralized and shared basis.

•	 Accelerates learning and adoption of best
no-code practices across projects.

•	 Fosters a higher degree of no-code
components reuse across teams within the
organization.

•	 Offers higher complexity of governance
because there will be a matrix of shared
accountability across both the business
unit and the CoE.

•	 Requires additional budgeting by the
organization to fund the centralized team.

37

No-code Roles and Responsibilities 04

Fusion team delivery

The last delivery model we’ll introduce is the
“fusion team.” This delivery model represents
a multidisciplinary team with members
coming from the business function and IT to
collaborate. Typically, this model is used when
you have greater technical requirements and
complexity that require software developers
to build some components of the no-code
application. The software developers may
still sit somewhere within the business
function — perhaps a business function unit
within the IT group — or they may be part of
a centralized corporate IT function. They may
also be tapped to provide expertise in specific
technical areas, such as security or DevOps.
Regardless of where they sit within the
organization, there is shared accountability
for the no-code app being built.

The fusion team model usually results in a
matrix organizational model. Most of the
key roles will still be driven by the business
unit, but some specialized no-code roles may
sit within an IT group. However, typically
software developers who may be supporting
the project from IT will have a dotted-line
reporting relationship to the overall business
unit.

Note: the concept of a fusion team is based
on research1 from the analyst firm Gartner.
You can reference more of their research on
the topic.

Considerations

•	 Provides access to more technical
development skills required by certain
projects.

•	 Blends technology skills, analytical skills,
and business domain expertise.

•	 Offers shared accountability for the
no-code solutions being built.

•	 Offers higher complexity of governance
because there will be a matrix of shared
accountability across both the business
unit and fusion team.

•	 Requires additional budgeting by the
organization to fund more technical talent
from IT.

•	 Slower and more resource dependent;
requires more time to align the IT and
business functions.

1 What Are Fusion Teams, Gartner

The No-Code Playbook

No-code
Roles and
Responsibilities

Regardless of which delivery model is
selected, there are a set of defined roles
that are typically present in any no-code
project. We briefly define each below,
outline their major responsibilities, and
discuss how they fit into one or more of
the delivery models.

Role

No-code stakeholder
The no-code stakeholder is a business function role — often a senior functional leader — who
acts as an executive sponsor on behalf of the business unit. Typically, they are chartered with
articulating the no-code app business vision and requirements and working with the no-code
project team to review and approve business use cases, prototypes, MVPs, changes, etc.
The no-code stakeholder will typically have a good understanding of the business process and
have sufficient authority to make decisions related to functionality. Finally, while the stakeholder
does not need to be deeply technical, they should understand the technology and its ability to
impact the business.

Responsible for: Delivery models:

•	 Defining and approving the business
vision and requirements.

•	 Providing overall direction and feedback
that shapes design activities.

•	 Providing feedback directly back to the
no-code development team during demos.

•	 Working with the no-code team to set
priorities for the backlog of micro use
cases.

•	 Final approver who indicates the app is
ready to deploy to production.

•	 Working with the business function,
CoE, and IT teams to procure and assign
resources to the no-code project team.

•	 Applies to all delivery models.

•	 In the CoE or fusion team scenarios, the
multidisciplinary teams should still have
a dotted-line reporting to the no-code
stakeholder who is ultimately responsible
for the project direction and success.

39

No-code Roles and Responsibilities 04

Role

No-code business architect
The no-code business architect is a business role often filled by a more senior expert. The
architect is responsible for setting the most suitable design approach. The architect decides on
the right option to deliver the project and the combination of reusable components that will be
needed. They also make sure the solution aligns with the business value. They are usually directly
involved in the no-code project and own more challenging design or development tasks.

Responsible for: Delivery models:

•	 Working with the no-code stakeholder
on defining requirements and design and
ensuring alignment of the options and
business needs.

•	 Providing subject matter and process
domain expertise that shapes design
activities.

•	 Participating directly within the no-code
development team in the app building
process; may take on more challenging
components.

•	 Coordinating with IT and Operations to
plan, schedule, and conduct Governance
reviews.

•	 Coordinating with Operations once the
app is approved and ready to deploy to
production.

•	 In fusion team delivery scenarios,
coordinating with IT software developers
to build out custom software components
of the no-code application.

•	 In fusion team delivery scenarios,
coordinating with IT to build or validate
integrations with other systems and APIs.

•	 Applies to the CoE and fusion team
models. Might be engaged in the DIY
model.

•	 The no-code business architect typically
sits within the business function itself.
However, the CoE may also have a
number of architects who can provide
subject matter expertise in more
specialized areas. They may also help the
CoE drive overall standards and best
practices, such as fostering, harvesting,
sharing, and reusing of components across
teams.

The No-Code Playbook

Role

No-code creator
The no-code creator sits within the business unit and has a strong understanding of the business
domain. Importantly, they also possess strong user empathy. They sit within the no-code project
team and have been trained in using the no-code tools. They are responsible for the system
configuration and quality activities using no-code capabilities.

Responsible for: Delivery models:

•	 Working with the no-code business
architect and no-code stakeholder to
contribute to requirements and designs
activities.

•	 Participating directly within the
no-code development team to build the
app; responsible for owning specific work
items (micro use cases) in the backlog
and implementing the use of the no-code
tools.

•	 Defining and executing quality assurance
(QA) activities to validate end-to-end user
scenarios.

•	 Producing user documentation, training,
or enablement related to the no-code
application.

•	 Working with the no-code business
architect to develop feedback mechanisms
and collect user and system feedback.

•	 Applies to all delivery models.

•	 There will be one or more no-code
creators on the team based on the size
and scope of the no-code application. For
larger applications, there may even be
multiple teams of no-code creators who
are working on the application in parallel.

41

No-code Roles and Responsibilities 04

Role

No-code CoE leader
The CoE leader is a cross-functional leadership role that helps drive efficient prioritization and
management of capacity and people resources leveraged within a shared CoE.

Responsible for: Delivery models:

•	 Driving the adoption, sharing, and reuse
of best practices for no-code across the
organization.

•	 Driving the adoption, sharing, and reuse
of components — often from some
type of shared internal repository or
marketplace — across project teams.

•	 Supporting the no-code stakeholder in
procuring and assigning resources to the
no-code project team (especially around
specialized skill sets).

•	 Responsible for recruiting, training,
certifying, and enabling no-code creators.

•	 Responsible for managing the process,
applying correct governance policies,
and promoting the no-code culture and
strategy.

•	 Helping to manage coordination and
conflict resolution across teams.

•	 Can help coordinate the planning and
scheduling of governance reviews.

•	 Applies to the CoE and fusion team
models.

The No-Code Playbook

Role Role

Software developers/QA Approvers (IT/Operations)
Software developers and QA resources
participate (if needed) as part of fusion teams
to help build and test more complex technical
components (e.g., new architecture services
and custom integrations). They have been
trained in custom software development tools,
skills, and methodologies.

Approvers participate as needed at certain
stages of the lifecycle and they are responsible
for advising on team compliance, governance,
and security criteria. They also provide final
governance checks and approval for Go-Live.
They have been trained in governance and
provide subject matter expertise to support
the no-code project team.

Responsible for: Responsible for:

Delivery models: Delivery models:

•	 Directly supporting the no-code
development team to build the app;
works with the no-code business architect
to own more technically complex
components of the overall solution.

•	 Defining and executing quality assurance
activities on their components.

•	 Directly supporting the no-code
development team in planning and
executing governance reviews (typically in
coordination with the business architect).

•	 Directly supporting the no-code app
release deployment with the final release
activities and post-release monitoring or
support.

•	 Applies to no-code fusion teams.

•	 These are typically IT roles, either sitting
in corporate IT or perhaps business unit
IT. They are typically not directly part of
the no-code project team, but they should
still have a dotted-line reporting to the
no-code stakeholder who is ultimately
responsible for the project direction and
success.

•	 Applies to the CoE and fusion team
models.

•	 These are typically IT or Operations
roles, usually sitting in a shared corporate
capacity — often representing Legal,
Compliance, IT, Security, human
resources (HR), and other administrative
functions. They tend not to be directly
part of the no-code project team, but
approvers should still have a dotted-line
reporting to the no-code stakeholder who
is ultimately responsible for the project
direction and success.

43

No-code Roles and Responsibilities 04

Building your no-code team is
critical, so start by identifying the
appropriate delivery model that
fits best. Next, understand the
responsibilities associated with each
role so that you can recruit team
members best suited for carrying
your project forward. While you
may be able to use no-code yourself,
you’re not going to realize the
broader outcomes if you do it alone.
Put care into your team selection,
so your no-code project is set up for
success.

Now that we’ve discussed the
various roles and delivery options,
which one should you choose? Let’s
look at a critical decision framework
called the Application Matrix that
will aid with picking the appropriate
delivery model and help scale many
key activities within the No-code
Lifecycle.

Final
Takeaways

04No-code Roles and Responsibilities

The No-Code Playbook

“Set your course by the
stars, not by the light of
every passing ship”

Omar N. Bradley

45

Application Matrix 05

 Application
Matrix 05

INTRODUCTION
TO NO-CODE

The No-Code Playbook

There was a time when all sea-traveling captains entrusted their lives to the stars to chart
their path. With simply a sextant and a clear view of the night sky, they could sail their way
around the globe! Now, of course, we have access to much more advanced technology. We are
used to (and, perhaps, dependent on) having phones with global positioning system (GPS)
receivers in our pockets, allowing us to adeptly navigate unknown cities or countries confidently.
Yet, as advanced as modern GPS is, its approach to finding your exact location — referred
to as trilateration — is not so dissimilar from how a sextant was used long ago. Instead of
triangulating off stars, a GPS receiver measures data from three orbiting satellites to form an
accurate position of its location on the Earth’s surface.

In this chapter, we’re going to introduce an important framework — the Application Matrix —
that will act as a GPS of sorts in charting your course through the No-code Lifecycle. However,
instead of anchoring our position based on readings from three satellites, we’ll take a reading on
the starting point for your no-code application by assessing three complexity dimensions —
specifically measuring the Business, Governance, and Technical complexity. The result of using
this framework will give you the basis for adapting the use of the No-code Lifecycle to meet
your needs. It will help you chart your course — both during the initial release and for the
subsequent continual evolution of your no-code application.

Introducing the
Application Matrix
It’s important to avoid a “one-size-fits-all”
mentality regarding no-code. The approach
you take to design and build a simple
no-code app may not be sufficient to handle
the complexity as the size/scale of your app
grows. For example, the requirements of an
employee feedback app would likely be very
different from those of a business-critical
solution like invoice management or digital
lending. Conversely, if you only applied the
approach that works for the largest and most
mission-critical projects across all apps, you
would overwhelm small project teams with too
much process and prevent them from moving
with speed and agility.

This means that different types of no-code
apps require different approaches to skill sets
and methodologies. Therefore, it’s important
to have a way to customize the methodology

to meet the scale of your project needs, and the
Application Matrix addresses this need. We’re
describing it upfront in the Playbook because it
will play a key role, and we will be referring to
it in various chapters.

The Application Matrix evaluates your
no-code project from three different
dimensions: Business, Governance, and
Technical. We will outline some of the
suggested criteria you should assess as a starting
point for each dimension. We will also provide
a few examples to illustrate the use cases.
However, like any framework, it is meant to be
customized and tailored to your specific needs.
You should ultimately internalize this within
your no-code team (or within the No-code
CoE) and adapt it to meet your needs precisely.

47

Application Matrix 05

Business complexity
Dimension

The Business complexity dimension helps assess where your app sits on the spectrum of
business process and organizational complexity. It will also assess how standardized the app
requirements may be or whether there will be a lot of variations that must be accounted for in
the requirements and design of the app. For each of the following criteria, you should assess
them on a scale of Simple, Medium, or Advanced.

No-code apps that score Medium or Advanced Business complexity should anticipate a more
sophisticated approach to design, along with more complex operational and deployment/
enablement requirements. Medium complexity apps may also benefit from
support by the No-code CoE. We’ll highlight these considerations in later
No-code Lifecycle chapters.

Process complexity

How complex is the business process? Is the
process simple and consistent, or does the
process include many different exceptions,
steps, rules, and multilevel nested processes?

Business critical use case

How critical is this to business operations?
If the app fails, can the business function
continue to operate? Will downtime have a
significant business impact (lost revenue, etc.)?

Cross-departmental usage

How broadly across the business is the app
used? Is it used within a single department/
unit or broadly across the business? Is it used
by partners or customers outside the business?

Regional requirements

This assesses how much variability the app
may have when used by different regional
user populations. For example, tax rules or
regulations may vary widely by region or
geography.

Language requirements

Is this a single-language app, or does it have
multilingual requirements? Are there any
requirements that will require significant
localization of the UX (e.g., adaptation of the
flow or layout)?

Suggested assessment criteria:

The No-Code Playbook

The Governance complexity dimension helps assess where your app sits on the spectrum of
requirements for compliance with external laws, guidelines, or regulations imposed by external
entities or internal audit groups within your organization. It will also assess the complexity of
specific security and data governance considerations. For each of the following criteria, you
should assess them on a scale of Simple, Medium, or Advanced.

No-code apps that score Medium or Advanced Governance complexity should anticipate a
more sophisticated design and deployment/operational procedures approach. They will also
require more advanced planning during the governance review stages. Medium complexity apps
may also benefit from support by the No-code CoE. We’ll discuss these considerations in later
No-code Lifecycle chapters.

External compliance

This includes generally accepted accounting
principles (GAAP), Sarbanes-Oxley Act
(SOX), Health Insurance Portability and
Accountability Act (HIPAA), and General
Data Protection Regulation (GDPR). Does
this fall under one or more established laws,
guidelines, or regulations imposed by external
governments, industries, and organizations?

Internal compliance

Does this fall under the governance of
internally enforced checklists, policies, or
controls? What are the business risks if this
fails to meet an internal audit? How complex
are the internal access controls?

Security requirements

How securely is the information being
accessed? What is the business risk if the
information is leaked or compromised due to
internal or external attacks?

Data governance

How is corporate data being managed
and secured? Does this contain sensitive,
proprietary, or confidential business data?
Does it contain customer personally
identifiable information?

Suggested assessment criteria:

Governance complexity
Dimension

49

Application Matrix 05

The Technical complexity dimension helps assess whether your team may require assistance
from professional developers or other specialized technical resources. This also will assess
whether the app requires additional options beyond the no-code tools (e.g., third-party
components and integration with packaged apps). Assess each of the following criteria on a
scale of Simple, Medium, or Advanced.

No-code apps that score Medium or Advanced Technical complexity should anticipate a more
sophisticated approach to design. Medium complexity apps may also benefit from support by
the No-code CoE while Advanced Technical complexity may require a fusion team approach.
They will also require more advanced planning during deployment and operations activities.
We’ll review these considerations in future chapters.

Coding requirements

Is custom code required for this project? (e.g.,
for custom controls or extensions outside of
the no-code platform).

Complexity of integrations

How complex is it to set up an integration
with the system? Do existing connectors exist,
or are custom integrations required? How
many external packaged apps or add-ons are
part of the solution?

UX/UI complexity

How complex is the UX of the app? Is it a
simple web form/portal, or does this require
more sophisticated omnichannel experiences
(e.g., native mobile and voice)?

Scale of user transactions

On average, how many users will the
app have? Will this be used infrequently
throughout the week, or is it an app that is
used daily/hourly?

Suggested assessment criteria:

Technical complexity
Dimension

The No-Code Playbook

Picking the Delivery Model
Once the aggregate complexity by dimension has been assessed, you will be able to select the
appropriate overall delivery model. The three delivery models discussed in the last chapter will be
applied again here: DIY delivery, CoE delivery, and fusion team.

No-code apps rated Simple across all three complexity dimensions can be readily owned and
delivered via the DIY team approach. No-code apps with Medium/Advanced complexity
usually require involvement from the No-code Center of Excellence. Finally, the no-code apps
with Advanced Technical complexity will likely be delivered using the fusion team approach.

Types Simple Medium Advanced

Business complexity DIY CoE CoE

Governance

complexity
DIY CoE CoE

Technical

complexity
DIY CoE Fusion

team

51

Application Matrix 05

Team feedback solution
Example #1

To help solidify these concepts, let’s walk through a few examples that put the Application
Matrix into action.

This first no-code app is a feedback-capturing solution built to capture internal feedback and
suggestions within the commercial teams of a shipping company. It’s a simple app with only a
few screens. It replaces the paper forms previously used by the company. The assessment using
the Application Matrix is as follows:

The Business complexity is rated Simple overall because the process and use case criticality are simple.

It was assessed with Simple Governance complexity because it is an internal app that contains little
or no sensitive company data, meaning it is low risk.

Process scope/complexity

Business critical use case

Cross-departmental usage

Regional requirements

Language requirements

→

→

→

→

→

→

→

→

→

External compliance

Internal compliance

Security requirements

Data governance

HR function

Can be captured manually if needed

Single department (Sales)

No variations – global process

Multiple languages (English, Spanish)

No external regulations

Low business risk

Internally accessed only

No sensitive information

Overall Assessment / Delivery Model:

Overall Assessment / Delivery Model:

Criteria

Criteria

Requirement

Requirement

Simple – DIY

Simple – DIY

Business complexity

Governance complexity

The No-Code Playbook

Technical complexity is also rated Simple given that the app could be built without any custom code
or integrations and has simple technical requirements.

Technical complexity

Code development requirements

Complexity of integrations

Number of users and transactions

UX/UI complexity

No code needed

One integration with standard API

100 users

Simple web form

Overall Assessment / Delivery Model:

Criteria Requirement

Simple – DIY

Field inspection solution
Example #2

This next no-code app is a field inspection solution built by a manufacturing company for
its inspection employees who will be visiting sites and completing checklists to validate
completeness and quality. Because of different equipment categories, it will have roughly
15 different workflows depending on the type of equipment.

The Business complexity is rated Medium overall because of the complexity of the inspection process,
the criticality of the use case, and the need to support regional variations.

Business complexity

Process scope/complexity

Business critical use case

Cross-departmental usage

Regional requirements

Language requirements

Inspection function

Impacts manufacturing processes

Single department (manufacturing)

Some variations (NA, EMEA, and APAC)

Single language (English)

Overall Assessment / Delivery Model:

Criteria Requirement

Medium – No-code CoE

Assessment:
This app represents a good example of one well-suited for the DIY delivery model. Its Simple
complexity along all three dimensions is definitely within the no-code team’s skill sets, even if it
is their first no-code project.

→

→

→

→

→

→

→

→

→

53

Application Matrix 05

It was assessed with Medium Governance complexity because it contains essential manufacturing data
and sensitive company information representing a medium risk.

Technical complexity is Simple. All needed capabilities can be built using the no-code visual tools and by
adding existing components.

Governance complexity

Technical complexity

External compliance

Internal compliance

Security requirements

Data governance

Code development requirements

Complexity of integrations

Number of users and transactions

UX/UI complexity

No external regulations

Medium business risk

Internally accessed only

Sensitive company information

No code needed

Three prebuilt integrations

250 users

Mobile and desktop

Overall Assessment / Delivery Model:

Overall Assessment / Delivery Model:

Criteria

Criteria

Requirement

Requirement

Medium – No-code CoE

Simple – DIY

Assessment:
This app is well suited for the No-code CoE delivery model. The no-code team would benefit
from CoE involvement to provide additional expertise throughout design activities and extra
support when the team is ready for governance reviews. The Technical complexity is low, given
that there is no need for custom coding of components or integrations.

→

→

→

→

→

→

→

→

The No-Code Playbook

The Governance complexity is assessed at Advanced because the app manages highly sensitive
customer financial data, falls under specific banking industry laws and regulations, and has strict data
governance requirements.

Governance complexity

External
compliance

Internal compliance

Security requirements

Data governance

Federal Deposit Insurance Corporation (FDIC)
& other industry regulations

Medium business risk

Internally accessed only

Highly sensitive customer information

Overall Assessment / Delivery Model:

Criteria Requirement

Advanced – No-code CoE

Financial advisor solution
Example #3

The last example is a financial advisor app used by a regional bank in the United States. It’s
used inside the branch by bank wealth management advisors, account managers, and other staff
to advise their clients on investment strategies and products. This is an advanced solution with
complex workflows and the need to be integrated with core banking systems.

The Business complexity is rated Medium overall because of the complexity of the financial advisory
processes, the criticality of the use case, and the cross-departmental uses.

Business complexity

Process scope/complexity

Business critical use case

Cross-departmental usage

Regional requirements

Language requirements

Wealth management

Impacts customer service

Cross-department

One region (US)

Single language (English)

Overall Assessment / Delivery Model:

Criteria Requirement

Medium – No-code CoE

→

→

→

→

→

→

→

→

→

55

Application Matrix 05

Technical complexity is also Advanced because of the complexity of integration with the core banking
system. It also has complex omnichannel requirements as it should be deployed across desktop web
and tablet form factors within the branch.

Technical complexity

Code development requirements

Complexity of integrations

Number of users and transactions

UX/UI complexity

Custom risk assessment logic

Custom integration with bank core

250-plus users

Web and tablet interfaces

Overall Assessment / Delivery Model:

Criteria Requirement

Advanced – Fusion team

Assessment:
This app is well suited for the fusion team multidisciplinary approach. The no-code team would
benefit from CoE involvement to provide expertise throughout design activities, and both
no-code creators and software developers can work jointly on the configuration process.

Scaling your approach to building your no-code app is key to success. You
should select the appropriate delivery model, which will help give you
the right set of roles and talent for your team. Also, take time to tailor
your methodology appropriately — you don’t want to underestimate
the complexity, which could lead to greater project risks or unnecessary
complexity in the project. Let the Application Matrix be the guide to chart
your course!

Now that the introductory concepts have been covered, we’re about to
discuss the methodology that should be followed for your project. Let’s
begin with the first phase: The Design Phase.

Final Takeaways

→

→

→

→

The No-Code Playbook

“Alice:
Would you tell me, please, which
way I ought to go from here?

The Cheshire Cat:
That depends a good deal on
where you want to get to.

Alice:
I don’t much care where.

The Cheshire Cat:
Then it doesn’t much matter
which way you go.

Alice:
... So long as I get somewhere.

The Cheshire Cat:
Oh, you’re sure to do that, if only
you walk long enough.”

Lewis Carroll,
“Alice’s Adventures
in Wonderland”

57

Introduction to Design 06

06Introduction
 to Design

DESIGN

The No-Code Playbook

Much like Alice in the famous
fairy tale “Alice’s Adventures
in Wonderland,” you may
be tempted to start charging
down the “no-code rabbit
hole” by immediately building
your first app without really
having a clear plan of where
you’re heading. Because it is
simple to build no-code apps,
it’s easy to immediately get
immersed in the details of
app building and lose sight
of the bigger picture. But you
will regret this later in your
journey when you get bogged
down in the complexities of
project delivery without a clear
view of the essentials needed
to ensure successful business
outcomes. Or worse, like Alice,
find yourself at the wrong
destination, and end up with
an app that doesn’t fulfill your
needs.

59

Introduction to Design 06

The Design Phase is critical
because it helps define the plan for
your application and ensures you
are building the app correctly.

The No-Code Playbook

accessible to nonprogrammers. For lower-
complexity applications, the business doesn’t
need any support from IT at all! This has a
fundamental advantage in terms of improving
the alignment of the design with the business
needs.

Another difference from traditional software
development is the efficiency of the design
process. Typical software development
depends on creating intermediate design
specifications and technical documents that
serve as the “bridge” between the business
function and developers. While software
design specifications and tools have improved
greatly over the years, they still all suffer from
similar challenges. Design documents often
suffer from the “telephone game” problem —
introducing transmission errors at an early
stage of their development. They are laborious
to create in the first place and even harder
to keep updated — commonly many design
documents become out of date almost as
soon as the first version is released and the
application begins to evolve. With no-code,
the work of the Design Phase is to use the
no-code tools directly as much as possible.
This results in a “living” design model — the
design and the implementation are updated
simultaneously over time from a shared model.

Another inherent challenge of traditional
development projects is maintaining the
accuracy and fidelity of the original business
requirements when it is communicated and
rolled out across the team. You may start with
a clear and simple definition of high-level
business needs, but these quickly become

You might ask, “Isn’t this just like any other
software development project?” It’s true that
the concept of application design is not new.
Design activities of some fashion have been
part of the software lifecycle since computer
programming was first invented. However, to
make full use of the no-code benefits outlined
earlier in the book, it’s important to recognize
some fundamental differences in the Design
Phase of a no-code project compared to a
custom software development.

Traditionally, design activities in custom
software development involved a high degree
of technical notation and abstraction that
required advanced technical skills that most
business users don’t possess. This was needed
to translate the business requirements into
specifications for the technical components
and architecture that a programmer used
to start writing code. For example, a skilled
business analyst might have used Agile “user
stories” and specialized tools to design the
user interface and capture the workflow.
However, these tools require another person
to “translate” those designs into detailed
specifications that are useful to a developer.
This translation process was often complex,
time-consuming, and prone to transmission
errors.

That’s why design work has often been done
by developers or technical architects.
However, the roles are different in no-code
projects (as we explored in Chapter 4).
Business stakeholders and end users are
more directly involved in the design itself
because no-code tools and processes are more

No-code Design Differences

Dashboard

61

Introduction to Design 06

obscured as more levels of detail are defined.
Each step in the design process must, at some
level, translate the original intent into a different
lower-level set of more detailed constructs. This is
very much like the classic party game, where one
person tells a story to another person. As the story
gets repeated multiple times, errors in translation
begin to inevitably creep in. You may end up
with something that, at the end of the project,
bears no resemblance to the original intent. With
no-code design, there is a singular definition of the
application — defined and updated throughout
the lifecycle using the no-code tools. This improves
accuracy and understanding by eliminating handoffs
and reinterpretation. All stakeholders across the
business function and development can share a
common view without requiring translation into
intermediate documents or semantics.

Finally, one of the challenges with any software
design is that it must be aligned (and continually
realigned) as the needs of the business change.
Ongoing changes are a given in the rapid and
dynamic environment in which most enterprises
compete. This may be continuous improvement of
business processes, innovation of new products or
services, or responding to a new competitive threat.
As the pace of business increases, the software
applications that your business depends on must
also be continuously updated, creating the risk of
introducing misalignment. The business function
may have already adapted to some external process
change, but the software development teams don’t
yet fully understand the intent, which means the
app doesn’t fully reflect the present state of the
business. With no-code projects, bringing together
a commonly shared view across business and
development helps improve the business alignment
with the application itself.

UX/U
I

In
teg

rat
ion

Workflow

Dashboard

The No-Code Playbook

The first stage defines the highest-level
business requirements for the solution you’re
building and outlines the criteria for business
success. During this stage, it’s important to
keep the right level of detail by focusing on
the “what” and the “why” but not the “how.”
While it’s tempting to get into details such
as defining the application UI or specifying
inputs/outputs or technology components,
the Business Use Case stage should focus
solely on higher-level requirements and
business processes. In Chapter 7, we will give
examples of appropriate levels of requirements
and define a simple template you can use
to capture and understand the business
requirements and their evolution over time.

This stage should also consider the full-picture
definition of the business. It’s important not
to start constraining yourselves too much
about how this might be broken into releases
over time. That will come later, but for now,
maintain a broad view of what the solution
needs to be according to business needs.

It’s time to examine in more detail what a No-code Design Phase looks like. While it may
sound daunting if you lack a technical background, don’t be alarmed! It’s quite straightforward
and composed of four key activities. Each of these will be described more fully in the following
chapters, but let’s briefly discuss the essential stages:

The second stage helps start to decompose
the overall solution vision and shape the
fundamental building blocks of the solution
by selecting the right combination of
packaged software, custom development,
no-code development, templates, and
components. This particular stage can seem

overwhelming at first, given the potentially
large number of options available, but we’ll
help you simplify this process with a basic
decision framework. This will help minimize
the number and complexity of elements in
the overall solution and reduce the ongoing
effort required to maintain it.

The Four Stages
of the No-code Design Phase

Business Use Case

Options Analysis

Stage 1

Stage 2

63

Introduction to Design 06

This stage looks broadly at the vision
identified by the business use case and uses
visual prototyping techniques to quickly
ideate and imagine the breadth of the
solution by defining user experience (UX)/
user interface (UI), workflow, analytics, etc.
Importantly, work activities in this stage
will be performed using the no-code tools
themselves — not intermediate document
specifications that are later turned into code.
The focus of the prototyping should be

breadth over depth — you’ll flesh out rapidly
what appears to be a working iteration of the
solution within the no-code environment
itself. It will seem to have most of the
desired business processes, forms, etc., but
the depth of the functionality and logic may
be incomplete or stubbed out. The scope of
this stage is still the broadest possible view of
the solution (in alignment with the Business
Use Case). Do not constrain your project by
scoping it down into releases yet.

Design and Prototyping

Project Assignment
The last stage decomposes the vision into
smaller use cases/apps/components. This is
where you begin to define your target roadmap
by focusing on the smallest possible initial
scope that delivers business value — what
is often referred to as the Minimum Viable
Product (MVP). The MVP must deliver a
minimum amount of utility quickly without
being bogged down by the fullest view of the
features and functionality that will be added
over time (these will be added incrementally
through a set of rapid updates). Think of this
as the minimum number of features required
to make the first version of the product useful.
As this MVP release is defined, you will make
key decisions on prioritization, what must be

delivered first, the sequencing of dependent
features, etc. Finally, you will apply a key
framework called the Application Matrix
(introduced in Chapter 5) that determines the
right delivery model based on assessing the
complexity of the application. The identified
delivery model will guide the assignment
and organization of the required resources
(e.g., budget, roles, system environments, etc.)
needed for the first release of the application.

Stage 3

Stage 4

1 | Business Use Case 2 | Options Analysis 3 | Design and Prototyping 4 | Project Assignment

The No-Code Playbook

The Design phase may sound like a sequential
activity, but it should be largely iterative —
activities performed later in the Phase
may uncover new ideas or opportunities
that should trigger you to iterate on earlier
thinking. This is typically true as you prototype
the vision and design — you’ll think of things
that may inform changes to the business
process. Unlike classic software development,
no-code design allows the business vision
to be influenced at times by the “art of the
possible” and to respond to new or innovative
ideas. This is a very powerful concept that
will encourage innovation — no-code offers
the ability to make changes to design easily
and quickly while immediately validating a
working model with business stakeholders.
This means the cost of experimentation is
lower, compared with traditional software
development approaches, which encourages
the use of ideation and iteration techniques
and a boldness that comes with a “freedom
from failure” approach.

This may sound like a lot, but it’s quite
straightforward. Each of these stages will be
explored in the following chapters, along with
guidance, sample templates, and practical tools
that can be used at each step along the way.

Freedom from
Failure

65

Introduction to Design 06

While software development can
be daunting and fraught with risks
and challenges, no-code design
techniques can set up business
leaders for success in designing
their software solutions. At first,
the business function may be
reluctant to perform this design
work themselves. Yet the power of
no-code makes this an ideal set of
activities for business stakeholders
and users to own and drive — it
puts them fully in control of shaping
the vision and approach. It helps
to ensure alignment with business
requirements and priorities. Finally,
having the business function own
the Design Phase will most often
result in breakthrough innovations
and deep alignment with the core
business strategy.

In the next few chapters, we’ll
unpack each of the activities
in the Design Phase. We’ll
start by examining the most
underappreciated (and usually
overlooked) stage in the design
process — beginning with a clear
understanding of the Business
Use Case.

Final
Takeaways

06Introduction to Design

The No-Code Playbook

“Beauty is in the eye of
the beholder”

Margaret Wolfe Hungerford

67

Business Use Case 07

Business
Use Case 07
Stage 1

DESIGN

The No-Code Playbook &simpleclear
The quest to meet and hopefully exceed
stakeholders’ expectations when developing
a new application can be like the quest for
true beauty — it’s always seen in the eye of
the beholder. And in most cases, there will
be plenty of beholders. Ask 10 different
people within your organization what they
expect from the app, and you’ll likely hear
12 different opinions! With all the possible
different ideas and perspectives on what
constitutes “success,” it’s easy to get caught up
in seeking to please all stakeholders. If you do
this, you risk losing focus on the high-priority
requirements that must be met for your app to
be successful.

Therefore, it’s critical to begin with a clear
and focused understanding of the essential
business requirements before you dive into
designing and building your app. This is
the intent of the first stage of the no-code
methodology — the Business Use Case, which
will define the intended business requirements
and outcomes. The business use case should
be in clear and simple language and defined
by the designated business sponsor of the
application.

69

Business Use Case 07&simpleclear
It may be tempting to rush through this stage
in the excitement of building apps. This can
be especially true for no-code apps, given
how easy and simple no-code tools are. It can
seem easy to start defining the application by
diving straight into the rapid construction of
forms and workflows. Yet, even with no-code,
you will still fail to deliver on expectations

if you haven’t thought through the business
requirements upfront. So, it’s important not to
skip this stage. Make sure you have captured
the essential business vision. Most applications
that fail to meet business needs fail at this
stage in the process, so pay careful attention to
the business use cases.

The No-Code Playbook

Understanding
the Development
Requirements Pyramid

The term “requirements” is often overloaded with many loose
meanings. It can cover a broad range of statements about what
an application must do. Throughout any application development
project, there is typically a broad spectrum of requirement
statements gathered — from high-level business statements (“what”
are the outcomes that must be achieved) down to highly detailed
technical statements (“how” should the application be built). To
help provide clarity on what we intended for the Business Use Case
stage, refer to the Development Requirements Pyramid.

71

Business Use Case 07

Business

User

System

High-level

Detailed

•	 Defined project goals and
objectives

•	 Described business process

•	 Detailed user stories

•	 Description of inputs and outputs

•	 Technical and system details

•	 Quality attributes and service levels

The No-Code Playbook

At its most simplistic level, the business use case should define the following: no-code
stakeholder, business processes, process use cases, process consistency, and success criteria. We’ll
briefly look at each of these key elements as follows.

No-code stakeholder

The no-code stakeholder is the primary
business owner of the requirements and is the
person ultimately accountable and responsible
for representing the sponsoring business
function or unit. There should only be one
business owner, who will act as the ultimate
viewpoint when it comes to making any
decisions on requirements or priorities.

Business processes

The best way to frame the business
requirements for a no-code app is by
describing the highest-level definition of the
business processes that will be addressed. Any
application ultimately will either automate a
new business process or digitize an existing
one. Starting with the business process frame
of reference enables you to describe the app
in a way that is easily mapped to the business
function.

The Pyramid divides requirements into three levels: business, user, and system.

•	 The business requirements focus on the
project goals and objectives. It defines
the business process at a high level that
is being automated or transformed by
the application. Sitting at the top of the
pyramid, this level is the primary focus of
our Business Use Case stage.

•	 The user level of requirements sits
in the middle and begins to capture
more detailed information about the
functionality your app will need. It’s
typically expressed through a user’s eyes.
In traditional software development, these
detailed requirements are often developed
using intermediate design artifacts, such
as user stories or user journeys, to describe
both user flows and inputs/outputs of the
app. This is not in scope for the Business
Use Case stage, but we will discuss how
similar considerations are captured later
during the Design and Prototyping stage.

•	 The system level of requirements is at
the base of the pyramid and addresses
nonfunctional and system requirements,
typically describing the technical
details of the application, such as
platforms supported, APIs, and required
environments as well as quality attributes
and service levels (e.g., response time and
performance/throughput). This is not in
scope for the Business Use Case stage
either because when you’re developing
a no-code app, the no-code platform
typically abstracts these considerations.
The system requirements typically
undergo a thorough assessment during the
software selection process for your
no-code tools.

73

Business Use Case 07

Process consistency

While a high-level process may seem globally
consistent at first, as you decompose it into
more granular process use cases, you may often
find variations in implementations across the
organization based on regional or business
unit differences. The business use case should
describe where known variations exist and
discuss the desired target state for the business
function (do they remain highly autonomous
or should they become entirely globally
consistent?). This will be further analyzed
during the Design and Prototyping stage.

Success criteria

Lastly, how do you measure success? When
will you know the initiative has been
completed? The no-code stakeholder should
specify this because they will most likely be
held accountable to these success criteria by
their leadership. Getting clear and measurable
on the success criteria is critical as this will be
essential when defining the initial release and
the app’s ongoing evolution.

Process use cases

A business process will typically consist of multiple subprocesses. Getting more granular in
your description is an important part of defining the business scope. You will want to describe
the business vision by decomposing the impacted process into smaller units, often referred to as
process use cases, which will be addressed by the app. Do not yet start to artificially narrow the
scope down to the initial release. Keeping the business vision broad is important at this stage.
We will discuss how to address scoping the first release later in the Project Assignment stage in
Chapter 10.

Best practice tip:

Drilling into successful techniques for process decomposition is outside the scope of this
book. Thankfully, however, there are a lot of resources available to help if you are new to this
activity. Most business analysis training or handbooks will include tips and practices for process
decomposition as a core concept.

The No-Code Playbook

The participants contributing to this phase
will usually come from within the business
function itself to ensure that it’s as close to
the front line and operational function as
possible. Typically, the key roles (discussed in
Chapter 4) who will contribute to the work
activity include the no-code stakeholder and
the no-code architect. It may also include
a no-code creator as a way to engage some

75

Business Use Case 07

members of the actual development team
into the early definition of the project
scope. These resources will almost always be
directly from the business group (function or
unit) that has chartered the application and
should have deep domain and subject matter
expertise about the business process and
functional requirements.

The No-Code Playbook

No-code stakeholder

The primary owner within the business is the
VP of Sales who is responsible for growing
the sales funnel with qualified enterprise
opportunities.

Business processes

The company builds its sales pipeline through
multiple sources, including inbound lead
generation, channel partners, and outbound
activity. The territory management approach is
meant to streamline and boost the outbound
activity by introducing a well-structured process
focused on selected enterprise accounts. The
process will be executed by the enterprise sales
team. Each sales rep will receive 30 target
accounts with up to 20 associated personas. The
goal of the enterprise rep is to generate and
qualify sales leads by matching personas with the
company’s possible solution use cases.

Territory
Management
Application

Real-world no-code example:

Let’s put this in action by presenting a
short example based on a use case for a
no-code application built by a fast-growing
outsourcing company. The company sought
to accelerate its revenue growth with a new
solution for automating territory management
for enterprise customers.

77

Business Use Case 07

Process use cases

Territory management can be further
decomposed into these use cases:

•	 Ability of the sales team to assign
accounts to other teams and individual
reps.

•	 Access to the assigned accounts and
the ability to segment them based on
different criteria.

•	 360-degree view of the assigned account.

•	 Ability to upload and view the associated
contacts (including needed details) within
the account with the ability to specify role
and engagement strategy.

•	 Ability to manage engagement cadences
with the account — plan, execute, and
report activities (calls, emails, messages,
and meetings) per each associated and
validated contact.

•	 Proactive alerts (marketing touches,
responses, news, and scoops) associated
with the account.

•	 Ability to generate leads and
opportunities within the account.

•	 Ongoing access to engagement-based
key performance indicators (KPIs) in
different dimensions — teams, individual
reps, territories, etc.

Process consistency

In this example, the process followed by each
of the regional sales teams (The Americas,
EMEA, and APAC) has a fair amount of
variability depending on regional priorities,
assigned verticals, and strategies. It was
decided in this case that the teams would
move to this new territory management app
to standardize around a globally consistent
process across regions to gain greater
efficiency and ease overall organizational
sales execution.

Success criteria

The success criteria for the new no-code
app were centered around increasing the
overall volume of the qualified pipeline. This
included increasing:

•	 Annual recurring revenue generated from
the territory.

•	 Pipeline volume created from the
territory.

•	 Number of opportunities promoted
within the territory.

•	 Number of sales qualified leads generated
from the territory.

•	 Conversion rates.

The No-Code Playbook

Tips
on Best
Practices

Let the no-code stakeholder explain the
business use case in a simple way with a focus
on expected value and business goals.

Stay at the right level of detail by focusing
on the “what” and the “why” but not the
“how”; focus on higher-level requirements
and business processes and avoid discussing
detailed recommendations regarding the
foreseen solution (e.g., what fields or objects
shall be used, etc.).

Understand the workflow and outcomes first.

Provide real-life examples to support the
business requirements.

WHAT? WHY?

79

Business Use Case 07

WHAT? WHY?

It’s easy to be impatient and push to
get started quickly. However, as John
W. Bergman famously said, “There is
never enough time to do it right, but
there is always enough time to do it
over.” Likewise, it may not seem as
if there is enough time for a proper
business use case, but this upfront
investment will help eliminate a lot
of downstream errors and wrong
decisions later.

The Business Use Case stage can
be the most important part of the
entire lifecycle because it helps
identify your target and how you
will measure success. Resist the

temptation to skip or rush through
this process. Instead, thoughtfully
identify as clear of a definition as
possible — this will act as the “true
North” that will keep the team on
track throughout the project and the
evolution of the app.

As you start turning the business use
case into a high-level architecture for
your application, you’ll need to start
making some key choices. How do
you pick the right components? In
the next chapter, we will explore how
to conduct an effective analysis of
your options.

07

Final Takeaways

Business Use Case

The No-Code Playbook

“The end is the final page
of a book. In LEGO®,
it’s not a thing.”

John Comley

81

Options Analysis 08

Options
 Analysis 08
Stage 2

DESIGN

81

The No-Code Playbook

One of the most popular children’s toys of all time is the brightly colored,
interlocking LEGO® bricks. The ability to rapidly construct anything you can
dream up — whether it be vehicles, buildings, trucks, or spaceships —
from a set of standardized pieces make it fast and fun for any child (or adult!)
to pursue their dreams of being a builder. No-code apps are a lot like LEGO®
bricks in that regard. They democratize the construction process — anyone
can be a LEGO® builder — by allowing you to assemble from preconstructed
components instead of having to manufacture your project from scratch.

One of the powerful attributes of a LEGO® project is that you are never
entirely done. There is always an opportunity (and desire) to continue to add
to or modify your construction with new or different pieces to get closer to the
vision in your imagination. This can also be a metaphor for how no-code apps
should be built — they are often rarely ever fully “done.” Instead, they keep
evolving and adapting along with the changing needs of your business. You can
start simple and then extend your initial vision by adding and replacing blocks
over time. Instead of this evolution becoming a risk to the stability of your
app, which is the case for a lot of traditional software applications, evolving a
no-code app is safe (and perhaps inevitable) as it is based upon an architecture
that supports this style of graceful evolution.

No-code solutions can be built entirely from “blocks” within the no-code
tools. You can also integrate building blocks from outside of the no-code
platform, such as integrating custom development code or integrations with
other systems. Don’t be overwhelmed by the various assembly options. In
this chapter, we’ll discuss an Options Analysis framework you can rely on for
picking the right blocks for your solution.

First, let’s start by reviewing the traditional development options available to
most enterprises: typically, it is a choice between “buy” and “build.” In most
enterprises, there is a mix of both as each option helps optimize for slightly
different outcomes. Packaged applications (“buy”) help you accelerate your
time to market but may constrain you to fit within a defined process or UX
provided by the application vendor. Custom development (“build”) will help
you meet even the most demanding customer requirements, but the process
will take you longer as it comes with the inherent risks of building from
scratch.

Traditional Development
Options: “Buy” vs. “Build”

83

Options Analysis 08

Traditional Development
Options: “Buy” vs. “Build”

When you use no-code development for building software, you can accelerate your time to
market by using configuration tools, prebuilt components, and templates. In the meantime,
you can meet and exceed even demanding enterprise-grade requirements by leveraging the
extensibility of the platform.

The addition of no-code enables a powerful new approach to a style of architecture typically
referred to as “composability.” Gartner uses the term “composable enterprise”1 when referring to
this approach of architecting modern systems built for adaptability. A composable architecture
is typically built around a standard foundation — based upon a no-code platform — that allows
you to add/change components both easily and quickly over time. Usually, prebuilt components
are provided by the no-code vendor or its community. Composable architectures use no-code as
the “glue” to assemble components and provide an overall architecture that is highly resilient and
adaptable to change.

Prebuilt components allow for a tremendous amount of reuse across the platform. Such
components are usually available through marketplaces maintained by prominent no-code
vendors. The marketplaces allow specialized developers to build connectors, extensions, and
even complete applications that the platform community can use (for example, see Creatio’s
marketplace: marketplace.creatio.com). This allows specialized knowledge to be packaged for
quick reuse by a nontechnical audience, and it offers greater speed of delivery and agility of the
no-code solution. Does your application need to obtain data from your accounting system, but
you don’t have the needed skills? Don’t worry, someone has likely built a connector that will
allow you access through the no-code platform.

1 The Future of Business Is Composable, Gartner Keynote

You can think of no-code as the third alternative — the one that offers the best of both worlds
in many cases. This can be visualized with the following diagram:

A
cc

el
er

at
e

Ti
m

e
to

 M
ar

ke
t

Meet Unique Customer Requirements

High

HighLow

Packaged applications

Custom development

No-code platforms

The No-Code Playbook

For enterprises used to simple “buy” and
“build” choices, the introduction of a

composable architecture approach
provides more flexibility and more

options to choose from — but,
understandably, more options can
also seem overwhelming. How do
you choose the best path when
there are many possible ways to
build a solution to a problem?
To address this dilemma, we
present a simple decision
framework for Options
Analysis to help guide the
selection process.

First, we generally suggest
embracing a philosophy of
simplicity. Try meeting your
business requirements using
the fewest different component

technologies needed. While it’s
good to have choices, including

too many types of differently
built components can often raise

the complexity of maintenance and
evolution. A simple, consistent, and

coherent architecture will generally
lead to lower support and maintenance

costs in the long run. Having a simpler
architecture will also typically be easier

to change and more resilient to the future
evolutions that will occur.

Options
Analysis

85

Options Analysis 08

Question #1

Question #3 Question #4

Question #2

How technically complex
is your use case?

How standardized is your
business process?

Are there specific
subcomponents that
could be integrated?

How much customization
is needed to meet your
business needs and
provide a competitive
advantage?

If you need a complex use case (with highly
specialized requirements), including the
development/changes of a legacy system
(for which it makes no sense to use the
no-code platform), then you should go for
custom development. An example might be an
application that has a unique architecture or
performance requirements. In this case, custom
development should be considered as a possible
option. However, many typical use cases do
include these types of requirements. We usually
wouldn’t recommend custom development for
traditional enterprise workflow automation
processes (e.g., sales, operations, finance, etc.).

If you need to automate a standardized
business process without too many specialized
needs — identify a packaged application if
one exists. Packaged applications are a great
fit for standardized business processes (e.g.,
accounting or payroll systems) because they
give you access to prebuilt functionality. They
can also help ensure you comply with existing
process standards for your industry. However,
be sure to verify that the packaged software
will meet your needs without requiring too
much customization. Otherwise, you may
encounter higher application maintenance
costs and upgrade efforts.

After the core solution architecture has
been selected, you’ll want to revisit the other
elements of your application to see if there are
narrow use cases that can also be covered by
third-party solutions and integrated with the
core application. For example, the sales tax
calculation use case can be automated by the
third-party module or APIs integrated with
the no-code solution (e.g., tax compliance
software like Avalara).

If you have many unique requirements
and need high flexibility in process change
management — either because of unique
business requirements or because the solution
differentiates your business, then, you should
use no-code to build your app. Preferably you
should start — if possible — with a ready-to-
use template or prebuilt components. By taking
advantage of pre-built apps and components,
you can lower the development cost while
responding more quickly to business or market
demands.

Next, use the following questions to begin identifying the major elements of your solution:

The No-Code Playbook

Let’s illustrate the concept by applying this simple decision framework to a few examples.

Example #1

Client accounting solution for a midsized business
services firm
Use case

A consulting firm is seeking a cloud-based solution to automate back-office processes, including
accounts receivable (A/R), accounts payable (A/P), general ledger (GL), and billing.

1.	 How standardized is your business process?
In this example, the back-office processes are fairly standard
and conform to the U.S. generally accepted accounting
principles (GAAP) accounting principles.

2.	 How much customization is needed to meet your business
needs and provide a competitive advantage?
Little customization is needed. This is a solution that
everyone in the market can access, a commodity that will not
differentiate our position in the market.

3.	 How technically complex is your use case?
The solution complexity is low. The requirement to be cloud-
based is no longer a technically complex requirement given
the broad availability of software-as-a-service (SaaS)-based
accounting solutions.

4.	 Are there specific subcomponents that could be integrated?
Yes, there are likely a few add-on modules or components
needed for specific functions.

Conclusion

In this case, packaged software is likely the best approach for
the firm given the availability of standardized SaaS accounting
solutions that would meet its needs. Additionally, the firm can draw on the SaaS vendor
community for key extensions that may be needed to support consulting needs (e.g., client time
tracking and reporting) without significant integration effort. No-code is probably not a great fit
here to begin with, but it may be considered in the future if some of the processes require a high
degree of customization as the business evolves.

87

Options Analysis 08

1.	 How standardized is your business process?
The process is quite unique and is dependent on
the types of products that the company produces
and delivers to the market.

2.	 How much customization is needed to meet
your business needs and provide a competitive
advantage?
The functionality will require heavy customization
because it is fully dependent on the existing
capabilities of the legacy solution, its objects, and
business logic.

3.	 How technically complex is your use case?
The use case itself is not especially complex.
However, it represents a part of a more
complicated order and product management
process automated via the legacy ERP. Thus, it will
require a deep knowledge of the existing solution
and software development resources.

4.	 Are there specific subcomponents that could be
integrated?
No, this is not currently required.

Example #2

Spare parts tracking extension
for a legacy ERP solution

Use case

For 25 years, a large manufacturing organization has been using its custom-built enterprise
resource planning (ERP) solution. The legacy system has covered most of the company’s use
cases, but business leaders need to introduce a new feature to track spare parts within orders as
well as product management data. The legacy system has limited integration capabilities, and
extending it requires a lot of coding and tribal knowledge.

Conclusion:

Assuming the company is not ready to make a significant investment to replace its
legacy ERP, the best approach is to build a custom-developed module on top of the
current ERP solution.

The No-Code Playbook

Example #3

Digital lending solution
Use case

Reviewing and approving bank loans is a time-consuming and expensive process. A bank wants
to automate the lending process to increase efficiency and create a better customer and employee
experience. The organization has a unique approach for capturing digital loan applications,
verifying them, and then processing loans through underwriting. Once complete, a customer can
use a secure portal to authorize the loan execution process digitally and via electronic signature.

1.	 How standardized is your business process?
The bank has a medium customized process that ensures the application’s completeness and
risk reduction through the underwriting process.

2.	 How much customization is needed to meet your business needs and provide a competitive
advantage?
High customization is needed. This is a market differentiator and will directly impact the
effectiveness of the bank’s go-to-market success.

3.	 How technically complex is your use case?
The solution complexity is high. The solution requires several integrations with the core
banking systems, secured portals, etc.

4.	 Are there specific subcomponents that could be integrated?
Yes, there are likely a few add-on modules or components needed for specific functions.

Conclusion

In this case, a no-code composable architecture is likely the best approach, given the medium
customization and high complexity needed to support the bank’s differentiated loan approval
process. The bank may go ahead with the no-code app using a prebuilt template for lending and
a number of connectors for integration with the core banking system, document management
solution, and e-signature. The no-code app will automate an overall workflow and streamline
how data is entered into the banking system. It will tightly integrate with other online services
to support specific functions, such as credit reviews, resulting in a simplified and efficient user
experience. This approach enables a highly differentiated process while still offering speed to
market by using third-party components where available. The no-code template
and connectors in this scenario were available from the vendor’s marketplace,
which allowed the bank to accelerate development by starting with pre-built and
reusable functionality.

89

Options Analysis 08

The organizations that are best set
up to thrive in today’s fast-paced
world are able to make changes
quickly. By adopting a composable
architecture approach using
no-code platform capabilities, you’ll
be designing an environment built
for change. When your business is
dynamic and ever-changing, you
need an architecture that allows you
to meet your evolving needs with
plug-and-play components. As you
embark on this journey, apply the
Options Analysis framework to
help simplify your overall approach
and develop a solution that is easily
maintainable and extensible to your
evolving needs.

Now that you’ve selected the
right approach to your solution
components, you’re ready to start
actively designing. What no-code
design best practices should be
followed and how “deep” do you go?

08

Final
Takeaways

Options Analysis

The No-Code Playbook

“As an architect, you
design for the present,
with an awareness of the
past, for a future which is
essentially unknown”

Norman Foster

91

Design and Prototyping 09

09Design and
Prototyping

Stage 3

DESIGN

The No-Code Playbook

When you are starting the design process, it’s natural to start focusing on the thorny details
of trying to solve the immediate business challenges. It’s tempting to want to go deep into
designing the specific features that you believe will represent the first release. But design (like
architecture) must balance near-term needs with future thinking — you must keep in mind your
longer-term aspirations and business vision (identified in the business use case) to guide the
evolution over time. So, it’s critical that the Design and Prototyping stage of the lifecycle focus
on the whole solution — you’re defining the long-term vision and architecture, not merely a few
of the immediate parts.

Another key tenet of this stage is that you should try to leverage the power of the no-code
platform to define the design of the application directly. Instead of putting the functional
requirements into an intermediate document and then translating it into code at a later stage,
the functional requirements and design process in no-code development are much more
efficient and streamlined. A no-code architect should define an application with all the needed
parameters using the no-code tools (e.g., fields, dashboards, UX/UI, and workflows) and make
changes on the fly when presenting and evolving a prototype. Unlike traditional prototyping,
with no-code, you’re building the software itself. It’s not a simple low-fidelity wireframe or some
type of “throw-away” clickable prototype — you’re building a working iteration of the final
application.

93

Design and Prototyping 09

Each of these will be briefly discussed in the following sections.

UX/UI design

Designing the user experience, typically
workplaces, and visual forms.

Integration design

Designing how the app will connect to other
systems of record or databases, using application
programming interfaces (APIs) or connectors.

Workflow and logic design

Designing business rules and processes (both
human and system processes) using a visual
workflow designer.

Dashboards and analytics design

Designing the pages or reports that will
provide analytical insights.

The Design and Prototyping stage should be performed using the no-code platform visual
tools themselves. This allows for rapid ideation cycles where the design effort more directly and
immediately can be tested with end users. While the exact number and type of tools will vary
depending on which vendor you select, there are typically at least five major design activities
performed during this stage:

UX/UI Design
Usually, the first step in the prototyping process begins with defining UI elements for the
input of business data, typically by providing a visual forms builder. The capabilities of the
forms builder may vary, but they will usually offer some sort of “drag-and-drop” design (from
a standard palette of UI controls or “widgets”) onto a visual canvas that allows you to design
the form and its required elements. More sophisticated no-code tools will already have
the needed components to provide optimized and consistent UX, including templates and
recommendations. They will also have a larger library of controls, and some may even offer
the ability to find and import controls from an external marketplace for even greater levels of
customization and flexibility.

The No-Code Playbook

Many no-code tools will offer the ability to define the business process, but this is an area where
there is a fair degree of variance in capability. On the simple range of the spectrum, the
no-code tool may simply provide the ability to chain multiple forms together to express
navigation through the application. On the other end of the spectrum, more sophisticated
no-code tools will offer a full-blown business process designer that visually describes the
business process, typically in some type of process notation. Some may offer support for industry

Workflow and Logic Design

During the Design and Prototyping stage, don’t try to capture every entity or fully define all
attributes. “Close enough” will be sufficient at this stage! The focus is not on completeness but on
capturing enough of the business domain so that you can validate the essential business vision
with your stakeholders. You can iteratively come back and extend/evolve the data model during
the MVP stage, so don’t sweat the details at this point!

Best practice tip:

The data model is usually connected to the UI, and advanced no-code platforms allow you to
combine data modeling with UI design. This is especially powerful during this Design and
Prototyping stage as it allows you to iterate very quickly without having to separately define the
data model. Another powerful benefit of this stage is the ability to rapidly build the UI within the
no-code tools themselves; there is no need for external prototyping tools, such as Figma, Adobe
XD, etc. as the prototyping is done seamlessly within the no-code platform.

Beyond just defining the form, this step of the design process also typically includes some implicit
business process steps associated with the UI. The form data will nearly always require some
business rule validations before you can submit the form. This usually also includes the required
inputs/output events (or triggers) that may be linked to the form and the chaining of multiple
forms into a mini workflow (if the input steps will not all fit into a single form). The forms may
also be dynamic, with defined rules or conditions that may cause optional or dynamic parts of
the forms to be displayed. All these additional layers of form design help make the input easier
and more intuitive for the end user, but they require more detail and definition during the design
process.

The UX of the no-code app is often (but not always) a composable UX (i.e., one which represents
data from multiple other systems). The benefit of a composable UX approach is that it provides a
simpler experience for end users by allowing them to enter data into the app once. Users do not
have to navigate to multiple systems and reenter the same data multiple times. This can provide
great improvements in productivity and speed of data entry.

95

Design and Prototyping 09

standards like Business Process and Model Notation (BPMN). BPMN-enabled designers are
great as they represent common knowledge across different stakeholders and can be easily read
by different groups/users.

During the Design and Prototyping stage, it’s usually fine to focus on the “happy path” process
(i.e., focus on the default process featuring no exceptional or error conditions). Later, during the
next phase, we will come back to the design activities and add in more variant and exception
paths but, for now, the simple process will help test the vision. It is important, however, to also
think about more than just workflow and incorporate business rules and additional logic because
it might be useful for the stakeholder.

While the high-level business process may be simple to understand, process definitions can
sometimes quickly become more complex during the design process. The top-level business
process may call many lower-level subprocesses to address specific variations or common
activities within a process. The nesting of processes is not technically required — you could
define all the steps as a single, large process — but proper nesting of processes is encouraged as it
will ultimately improve both the ease of understanding and reuse of your process definition. For
example, a top-level order processing workflow may call a nested inventory picking workflow to
ensure products are reserved and picked for the customer before returning to the next step of the
top-level workflow. Nesting prevents you from creating one monolithic workflow that is hard to
understand and maintain.

The ability to describe a business process visually is very important as it allows the business
stakeholders to describe requirements in a language that easily matches the way they think about
their business function — a sequential flow of decisions, actions, and results. This allows them to
provide feedback more readily on both the accuracy of the current process (if you are automating
a process that exists), and it helps them envision TO BE processes that you may be introducing.

During the Design and Prototyping stage, focus primarily on the top-level workflow
(or perhaps the first-level nested workflow). You may want to temporarily skip over the
prototyping to define exceptions and system processes for now; they will be needed in the MVP
solution, but you can come back and iteratively add these details once the business function has
validated the vision. You probably want to acknowledge (and perhaps list) the variant processes
as it’s important for the stakeholder to define how standard the processes should be across the
organization, but fully defining these using the no-code tools may not be required during
the prototyping work.

Best practice tip:

The No-Code Playbook

The integration design is an essential part of nearly every
no-code tool. This allows your no-code app to work with
the business data from other applications, and it helps
your app fit into an existing set of IT applications and
data sources. However, the integration design capabilities
will vary tremendously across no-code tools. Some may
be limited to only working with a few data sources, such
as working with spreadsheets or database tables. Capable
no-code platforms will offer a broader selection of ready-
made integrations (usually referred to as “connectors” or
“adapters”). Sometimes, they will even offer a broader
marketplace where you can discover and reuse prebuilt
integrations that are offered by either the vendor or by
their community.

During prototyping, try to keep the integration simple —
this stage doesn’t typically require full-blown data
integration but just an illustration of the possibility. You
will find that representational state transfer (REST) and
simple object access protocol (SOAP) services are often
the best way to set up easy data exchange, or you may be
able to use a prebuilt connector. In the next phase, you
may need to get into more complex integration design
activities. For example, you may have systems for which
there is no off-the-shelf connector — it may be because it’s
a custom application or because it’s a less commonly used
system (and the no-code vendor or their community hasn’t
yet seen sufficient market demand to build a connector).
To handle these scenarios, typically no-code platforms
offer some type of Software Development Kit (SDK) for
building custom connectors if one doesn’t already exist.
However, this will require additional custom development
skills to be part of your project team. It also may require
coordination with the no-code vendor to operationalize
the connector into your runtime environment if your
platform is running in a cloud environment.

Integration Design

97

Design and Prototyping 09

During the Design and Prototyping stage, you want to
limit the integration efforts — you can either deploy a
ready-to-use connector from an available marketplace or
set up a simple REST interface, or even configure a mock-
up of the integration to visually showcase the stakeholder
how it might be working. This can help you avoid
unnecessary complexity and possible delays at this stage.

Some additional notes on integration design:

•	 It is usually highly recommended that no-code tools
DO NOT map directly to another system table or data
source. This creates a dependency on the underlying
system, which can cause the no-code mappings to “break”
if the other system is upgraded or changes its data model.
Instead, most no-code tools will use a standard API for
any system to enable them to be more resilient when the
applications are upgraded.

•	 While the no-code platform may offer prebuilt
integrations, this does not remove some of the
fundamental complexity of internal application
integration. Your IT department may have heavily
customized or extended the existing systems, which may
require additional logic to be added to the integrations or
mapping. This is where a fusion team may be required.

•	 You may need to consider data migration requirements
as part of this activity as well. This may be needed if the
integration is more of a one-time load of data files into the
system or if you are replacing a legacy system (and need to
preload it with key reference data). For migration/import
of data, you should attempt to find the easiest path; for
example, a common approach is to import existing data
through Excel files, which are usually supported as a file
format across a wide range of systems.

Best practice tip:

The No-Code Playbook

This design activity guides the prototyping of the pages or reports that will provide
analytical insights. The no-code tool will typically offer some way to visually compose a
dashboard or report, often through drag-and-drop of prebuilt components into a dashboard
page. This will be similar to the UX/UI forms design but will leverage prebuilt visual
widgets (e.g., bar charts, line charts, and highlight tables) to assemble into a dashboard page.
There will be some way to configure these widgets
to connect them to data from other systems. There
may also be a set of prebuilt components available
through the vendor’s marketplace that can offer a
rich set of visualizations and data sources.

Dashboards are important as part of your no‑code
app design to help employees to monitor the
performance of the business use case at once. With
just one UI form, the user has a more limited
view of the process. Having a dashboard allows
users to view multiple visualizations at once and
understand the business from many different
angles. Dashboards also make it much easier to
compare data on the fly as they can group together
related data visualizations into a single page that
allows users to quickly get a sense of how those
visualizations are related in real time. This allows
your users to make connections in the business data
that can drive new insights and enable taking more
holistic actions to improve the process.

Finally, dashboards help your no-code app make
better use of the data that is already collected, making it contextual, holistic, and actionable.
Having embedded dashboards within your no-code app can help every aspect of your users’
operations by enabling them to become more data-driven and allowing them to leverage
that data to drive insight and focus on the right areas. One good place to start is by focusing
on targeted key performance indicators (KPIs) that are meaningful to your business process.
KPIs are the metrics that will be used to determine whether a process is performing
successfully. This helps the average user focus on the top improvement areas and helps
improve overall levels of impact and efficiency.

Dashboard and
Analytics Design

99

Design and Prototyping 09

Start simple during the Design and Prototyping stage. Set
up easy-to-digest dashboards and KPIs that highlight the
result of the use case. At this stage, it’s important to simply
show the vision of how a dashboard may be used; it’s not
necessary to have accurate data that correctly matches the
process. For prototyping, you should consider stubbing
out data or using simpler data that may be easily available.
You’ll come back to data during the Go-Live design
activities. However, for this stage, it’s important simply to
show the ability to demonstrate the type of data and how
it can be analyzed. The accuracy and completeness of the
data can be addressed down the road.

Best practice tip:

The No-Code Playbook

101

Design and Prototyping 09

As outlined above, the intent of this effort is to focus on breadth not
depth — you are constructing the “frame” of the app not designing every
last detail. Don’t worry, these details will be added to the app iteratively as it
evolves into the MVP stage. The important focus of this stage is to provide
a “close enough” representation of the business vision that you can validate
with your business stakeholder.

This iterative approach to the no-code Design and Prototyping stage has the
following benefits:

•	 Early prototyping helps you thoroughly test and evaluate the design.
Users typically respond better to seeing (what appears to be) a functional
app and providing input and feedback.

•	 It’s much faster and cheaper to make changes based upon feedback early
in the process before you have started formal development.

•	 This fluid approach to prototyping and iterating encourages innovation
and more “out-of-the-box” thinking, as the cost of exploring and ideating
is much lower with no-code.

•	 It can help you with understanding costs, issues, and risks, allowing you
to make more accurate estimates. Having a prototype of the full scope
will let you more accurately size and scope what can fit into the initial
MVP release.

If used correctly, this powerful approach to no-code design will help you
prepare for the “unknown future” by allowing you to experiment, collect
feedback, and iterate rapidly to ensure alignment with the business vision.
Now that we’ve validated this vision, let’s change gears in the next chapter
and begin to define the successful steps that will get you to
your destination.

Final Takeaways

Design and Prototyping 09

The No-Code Playbook

“The odds of hitting your
target go up dramatically
when you aim at it”

Mal Pancoast

103

Project Assignment 10

Project
 Assignment 10
Stage 4

DESIGN

The No-Code Playbook

Despite constant evolution and innovation, custom
application development projects can still be risky
and may fail to meet the expectations of the business
function. While there are many reasons for this, it’s well
understood that longer and larger projects present higher
risks including scope creep, budget/schedule overruns,
and in the end — missed business opportunities. Trying
to be overly ambitious when building software is a recipe
for disaster! So, while the earlier stages of the No-code
Lifecycle looked broadly at the business vision and
requirements, and prototyped a broad view of the overall
solution, this stage will now narrow our focus. Here,
you’ll get a clear view of the achievable “target” that you
want to aim for in the first release.

The Project Assignment stage defines the target scope
of your no-code app that you will be building in the next
phase (the Go-Live Phase). At a high level, it includes
the following activities:

•	 Decomposing the business use case into smaller use
cases.

•	 Selecting and confirming which of these use cases
will be included in the initial Go-Live scope.

•	 Ensuring that the scope aligns with any timeline
constraints established by the business function.

•	 Defining the necessary roles and participants in the
project (using the delivery model suggested by the
Application Matrix described in Chapter 5).

•	 Preparation for enablement of the release (including
identification of power users, scheduling of
governance checks, planning enablement, selecting
the right set of environments, etc.).

We’ll be exploring each of these activities briefly in this
chapter but, first, let’s start by digging into the concept of
a “Minimum Viable Product” (introduced in Chapter 6).

105

Project Assignment 10

In software development, the approach of
defining a narrow initial release is often referred
to as selecting an MVP. It is a concept taken
from the book “Lean Startup” by Eric Ries. The
approach stresses the benefits of defining the
smallest scope possible for an initial software
release. This approach allows you to quickly
get the software in front of actual users to

begin learning how they use the product and validate its business value. MVP emphasizes
time to market over striving for perfection. It allows you to change direction before too much
investment has been sunk into the current approach. By taking this iterative approach to
development, you can use early feedback from real users to continuously enhance your software
rather than investing time into building something your users don’t really want.

The MVP approach has some pitfalls. Some development teams may overemphasize the
“minimum” in their scope and release versions that fail to deliver business value due to their
limitations. When adopting MVPs, it’s critical that your scope definitions deliver enough value
to warrant the rollout to end users. Remember the adage, “you never get a second chance to
make a first impression.” If your MVP lacks sufficient value or capabilities, users may not stick
around long enough to wait for it to evolve into something better.

With that defined, let’s walk through some of the key steps to perform in the Project
Assignment stage.

Minimum
Viable Product
(MVP)

Step #1

Decomposing the business use case
You should start with the overall definition
that you first outlined in the business use case
stage. This probably already included some
definitions of smaller subprocesses that enable
a broader business vision. During the Design
and Prototyping stage, you likely further
decomposed the overall processes into smaller
subprocesses, prototyped with the
no-code tools. This list of subprocesses
provides a candidate inventory that could
be part of the MVP but, for now, they are
too broad to include in the initial Go-Live

release and will need further prioritization.
For example, thinking back to our Territory
Management solution, the MVP may include
the ability to assign accounts and track key
account data points, including associated
contacts, as well as capabilities to execute
core engagement cadences. Meanwhile,
other features, such as integration with a
data enrichment tool, more sophisticated
workflows, and an advanced dashboard can be
delivered after the initial MVP release.

The No-Code Playbook

Step #3

Step #2

Applying timeline constraints

Selecting and confirming the Go-Live scope

In traditional software development, the
timeline is often estimated either by a bottom-
up estimate of how long it will take (common
with waterfall development) or as a predefined
structure of the release cadence (common
with Agile, which will start with some defined
sprints/releases). However, this works only
in cases where the development team can
arbitrarily set its own timetable without
having any influence or constraints imposed
by the market or business. Alternatively, we
recommend that it’s often better to start with
understanding the business timetable — there
is usually some defined timeline linked to

the agreed success criteria as stated in the
Business Use Case stage (e.g., having the
app support the launch of a new product or
service, or enabling the rollout of a process
change). It is important to understand external
drivers and factors that will influence scoping
of the process and use cases.

Based on the timeline constraints, revisit the
candidate set of subprocesses you prioritized
and selected in the prior step. If you cannot
fit the desired scope into the timeline, it may
require a further narrowing of the scope to fit
within the calendar constraints.

You should work with the no-code stakeholder
to prioritize your inventory of candidate
subprocesses based on the business impact and
value to users. The work you have performed
during the Design and Prototyping stage will
have helped educate and inform your business
stakeholders about the benefits by visibly
demonstrating the value that will be released
with the no-code app.

At this point, attempt to work with the
no-code stakeholder to define how far down
the prioritized list you must go to deliver
sufficient initial business value. Typically, the
MVP scope should include at least one end-
to-end subprocess. The key will be to identify
the smallest set of individual subprocesses/
business tasks that, when implemented, cover
the most important part of the business
requirements.

Best practice tip:

It’s recommended to assign a stack-ranked prioritization of subprocesses, rather than simply
classifying each as “small,” “medium,” or “high” value (often referred to as “T-shirt sizing”).
Forcing a ranked prioritization is more difficult and may require a lot of discussions but,
ultimately, it will be essential when applying later constraints while finalizing the release
definition.

107

Project Assignment 10

Step #4

Step #5

Identify the appropriate delivery model

Defining roles and participants

1.	 Multiple roles can be played by a single
individual, especially on very small
projects. However, beware of having
people wear too many hats. Also, the
no-code stakeholder should be
independent of the full-time members
on the development team because it’s
important to have a sufficiently senior
stakeholder who isn’t biased by the day-
to-day tactical efforts.

2.	 Roles can be played by part-time
members assigned to the project, but
make sure that all individuals assigned to
the project are able to spend a sufficient
amount of time with the no-code team.

3.	 At times, it may be difficult to get
sufficient resources assigned with the
correct amount of bandwidth — especially
resources from the business function,
which typically already has full-time
accountabilities to the organization in
other areas. Ultimately, it’s the no-code
stakeholder’s responsibility to make the
case to management for freeing up the
necessary resources to make the no-code
project a priority.

Now that the target scope is mostly defined, you should select the correct delivery model using
the Application Matrix framework presented earlier in Chapter 5. This is important as it will
help define the types of resources the project needs: Can the business team deliver this app
independently? Is more support needed from a fusion team, including software developers
(to build more complex components), or from the No-code CoE if one exists? Selecting
the delivery model is also the key to sizing up or down the remaining stages in the no-code
methodology, as some stages (in particular the “governance checks” in Chapter 14) may need to
be scaled depending on the complexity of your needs.

With the delivery model set, you should start identifying the roles you’ll need for your project. A
few considerations to keep in mind:

The No-Code Playbook

Step #6

Future project enablement

1.	 Power users. While you may have some
users already integrated into your no-code
development team, you should plan to
identify and recruit a set of “power users”
(those who are highly proficient with the
current business function/process and
represent individuals who would give you
more advanced and richer feedback). It’s
important to have these power users test
the app prior to going live, typically as
part of a user acceptance test (which will
be discussed in Chapter 15).

2.	 Governance checks. In a similar fashion,
it’s recommended to identify and allocate
resources of the governance team to
test all the compliance and regulatory
requirements; this won’t be performed
until the Governance Checks stage
(described in Chapter 14), but you’ll want
to secure their time in advance proactively.
Keep in mind that the types and depth
of governance checks vary based on
your application complexity, so use the
Application Matrix to select and scale as
needed.

3.	 User enablement planning. It’s also a
good idea to start proactively building the
user enablement plan so it’s not left to the
last minute. It’s important to build the
enablement content and schedule training
and walk-throughs for application users.
Too often, this is compressed late in
the project as an afterthought. Start by
assigning someone early in the project
to own building the plan. They will work

alongside the no-code development team
as the app is built.

4.	 No-code environments. There will
need to be some set of no-code cloud
environments to support the development
effort. There are typically at least two
environments — development (where
the daily core no-code building and
testing take place) and production (where
the “live” application will exist). This
list will vary somewhat, and you may
decide to add or remove environments
depending on the complexity of the
app and the number and size of teams.
For example, more complex enterprise
deployments may add additional quality
assurance (QA) environments for more
comprehensive testing efforts and often
a preproduction environment (a close
mirror to production, typically used for
a user acceptance test). The Application
Matrix can help you with the approximate
sizing of environments.

5.	 Release strategy. Finally, after all of
your team members have been assigned
to these tasks, you can begin defining a
roadmap and schedule for both MVP
and subsequent releases. Identification of
parallel vs. sequential delivery is another
important step. Seek opportunities to
deliver multiple apps and/or components
in parallel.

Besides the individuals involved in the development effort, what other resources are needed to
enable your project? This may typically include, but is not limited to the following:

109

Project Assignment 10

When you focus on perfection and
completeness, you risk trying to
“boil the ocean” by including too
much in the first release. It’s key
to mitigate this risk by staying “on
target” and focusing on an MVP
that delivers “just enough” features
to test value early and adopt an
incremental approach to adding
functionality over time. Yet, you can’t
build incomplete feature sets — each
step of the journey must still be
incrementally valuable, usable, and
delightful. That is the art of defining
the MVP release.

Now that you’ve scoped and
assembled the MVP release — with
the right team and resources — it’s
time to move to the next phase of
the No-code Lifecycle. You’re now
ready to begin the Go-Live Phase!

10Project Assignment

Final
Takeaways

“If everything seems
under control, you’re not
going fast enough”

Mario Andretti

111

Introduction to Go-Live 11

Introduction
 to Go-Live 11

GO-LIVE

The No-Code Playbook

The Go-Live Phase begins the actual
development of your no-code app. Part of
the power of no-code is that it abstracts
you away from a lot of the low-level details
of traditional software development, which
allows for a greater ability to step back and
focus on what matters — releasing the MVP
app to your users as quickly as possible!

So, we’re going to start with the basics. In this
primer, we’ll introduce the key concepts and
provide important context about the approach
as well as tips and best practices to navigate
you through this phase. The following chapters
will then dive into more specific details on
each of the individual No-code Lifecycle
stages. Keep in mind that the stages we’ll
outline include what is relevant to mission-
critical enterprise applications. However, the
steps may be streamlined significantly if your
apps are not complex. Please remember to
use the Application Matrix to assess the level
of complexity of your apps. In most cases,
especially when the applications don’t include
critical requirements, Go-Live should happen
in days or weeks (not months or quarters).

113

Introduction to Go-Live 11

Let’s start, however, by taking a fresh
look at the no-code development
specifics and discussing how they vary

from traditional development at this stage
of the cycle. First, in no-code, the business
function acts as a direct participant in the
development itself, rather than simply
being an external stakeholder specifying
requirements to the developers. The common
software development methods tend to
focus primarily on software developer roles
and don’t consider business personas as
being direct participants in the team (or
even contemplate the fact that the business
function might be a developer). In contrast,
the business function sits directly in the
driver’s seat in no-code projects — authoring
the requirements and driving the design
activities. The business function will also play
the lead role (and often the sole role) in the
development by placing no-code creators and
no-code architects directly onto the team
itself. When the business function plays a
larger role, you typically have greater direct
knowledge and understanding of the business
domain seeded into the development itself.
This often results in improved efficiency and
accelerates the creation of differentiating
intellectual property. It also increases the
overall speed of getting your no-code
application live and into the hands of end-
users.

Secondly, no-code offers a unique
opportunity to gather user input much
earlier in the process. In traditional

development projects, you often must wait for
user feedback until the end of a sprint or until

you have a functioning application, which
can be fairly late in the development process
(perhaps during user acceptance testing).
This often results in delays because you may
receive key feedback late in the project and
spend time reworking functionality or adding
missing features. In contrast, with no-code
development, you can capture user feedback
early and iteratively (as you will nearly always
have a working app, even at the start of the
project), providing the ability to incrementally
course correct and accelerate your progress.

Finally, there tends to be more fluid
movement between ideation/design/build
activities because of the inherent power

and ease of collaboration with visual no-code
tools (the idea or design becomes the app
itself, not simply a throwaway documentation
artifact). This typically results in a more
effective rapid collaboration between the
no-code team and the business stakeholder.
It also means that the feedback you collect
from end users during the building process
doesn’t have to be put into a future backlog
that may not receive attention for weeks or
months later. Rather, your no-code teams
can often take the input they received during
daily/weekly feedback sessions and address it
the same day. Note that scope management is
still important, and you need to ensure you’re
applying the same criteria for defining the
MVP as discussed in Chapter 10. You can
often address smaller feedback relevant to the
MVP almost immediately.

No-code Go-Live Differences

1

2

3

The No-Code Playbook

Go-Live
5 | Prototype-to-MVP

Let’s start to examine in more detail what the Go-Live Phase actually looks like. As with the
Design Phase, this is composed of four key activities. Each of these will be described more fully
in the following chapters, but let’s briefly discuss the essential stages:

Breaking It Down

Stage 5

Prototype-to-MVP
This begins the process of building the MVP
functionality defined in the prior stage. We
will continue the philosophy that we should
use the no-code visual tools to perform as
much of the work as possible. This means
that throughout the design and building of
the MVP app, the activity will continue to be
captured visually inside the no-code platform
(as opposed to making specifications in
separate design documents). This results in a
very efficient, lean, and iterative approach. At
this stage, you are taking the loose prototypes
defined in prior stages and fully fleshing them
out so that they fulfill their intended purpose.
The result is a completed solution. This may
include completing the data model, workflows,
and all the required user forms as well as
building any required reports, etc.

We will manage the process using Kanban
as an Agile methodology. This allows you to
visually track and manage the flow of work
through a series of development stages. Unlike
frameworks, such as Scrum, Kanban can be
layered incrementally on top of your team or

processes. It also allows you more flexibility
to release updates when they are ready vs.
having to adhere to strict sprint or release
planning structures that take a fair amount of
training and experience to get right. Finally,
we’ll discuss the important topic of software
testing, which should also be adapted and
streamlined because the no-code environment
abstracts much of the traditional need for
unit or infrastructure tests and allows the
quality focus to stay at the business and user
requirements level.

The no-code creators will take on a significant
leadership role as the building begins. These
creators will primarily come directly from
the business group (function or unit) that has
chartered the application or from the business
analytics group. For more complex projects
(as assessed using the Application Matrix)
that involve a fusion team delivery model,
software engineers may be integrated into the
project as well.

115

Introduction to Go-Live 11

Go-Live
6 | Feedback Loop 7 | Governance Checks

Stage 6

Stage 7

Feedback Loop

Governance Checks

As discussed earlier, we’ll walk through how to
capture feedback throughout the development
process using an approach to continuous
feedback. This will build on the earlier
feedback you captured during the Design and
Prototyping stages. The feedback becomes
more specific and focused on the current

release use cases as the focus is shifting from
broad design thinking to a more concentrated
view for the MVP. We’ll also discuss how to
select the right stakeholders to give feedback,
the right frequency of feedback, and how to
efficiently approach change management of
user feedback.

This is a critical step of the review process to ensure your app has successfully passed the
applicable checklists and is ready for production release. This typically includes reviewing the
following:

1.	 External compliance checklists to assess
compliance with external laws, guidelines,
or regulations imposed by government
institutions, industries, and organizations.

2.	 Internal compliance checklists imposed
by internal audit teams or committees to
enforce adherence to rules, regulations,
and practices as defined by internal
policies and access controls.

3.	 Security checklists to protect your
corporate information resources from
external or internal attacks.

4.	 Data governance checks to assess how
sensitive corporate data is managed and
secured.

The No-Code Playbook

Go -Live
8 | First Release

Stage 8

First Release

This last stage is where the application is
released to production to end users. The
release process is typically straightforward
in modern no-code platforms — they adopt
the “continuous deployment” philosophy and
use automation to deploy features quickly
and seamlessly across environments in an
on-demand fashion. However, there will
be variations in the number and type of
environments as well as in the specific steps

of the continuous deployment workflow. The
scale and complexity of the release will be
driven by the Application Matrix, which helps
define the appropriate level of sophistication
needed. Finally, there are associated
operational/support readiness activities and
end-user onboarding/enablement activities
that will be needed for the first release of the
application.

This is a lot to cover, but we’ll step through each of these stages in the following chapters, and
offer guidance, examples, and practical tips that can be used along the way.

117

Introduction to Go-Live 11

Don’t lose sight of the destination
when building no-code software:
releasing your MVP as quickly as
possible. One of the key benefits of
no-code development is the ability
to streamline the steps of traditional
software development so that you
can build your app faster for your
end users. No-code platforms offer
the opportunity to reimagine key
parts of the software development
process. Rather than simply
following a traditional software
development approach, embrace
the potential of no-code and take
full advantage of its power by going
live with an exciting app in days or
weeks, not months.

In the next few chapters, we’ll take
a lap through each of the activities
in the Go-Live Phase, beginning
with the first stage in building the
no-code application: Prototype-to-
MVP!

Final
Takeaways

Introduction to Go-Live 11

The No-Code Playbook

“Don’t let perfect be the
enemy of good”

-	 Voltaire

119

Prototype-to-MVP 12

Prototype-
to-MVP 12
Stage 5

GO-LIVE

The No-Code Playbook

Classic software development methodologies
sometimes overfocus on managing risk and
uncertainty, leading to many additional steps
in development and QA on the quest to strive
for perfection. If you’re building software to
power a rocket ship that flies to the moon,
this is completely understandable! It can take
years to ensure the software’s completeness
and perfection. However, in the business
world, the pressure to avoid disruption (think
Uber, Netflix, etc.) demands greater speed and
requires the ability to release apps and features
swiftly so that you can respond to competitors
or innovate your business processes faster. This
demands a focus on meeting the needs of the
business and maintaining a fast pace. Your
initial release should focus on key capabilities
that can be deployed quickly to enable the
business to move forward. Perfection can be
achieved in later stages following the everyday
delivery approach that we will describe later.

No-code development helps meet these
pressing challenges by accelerating the
development of both the initial release and
enabling rapid and continual updates. The
Prototype-to-MVP stage starts by focusing
on the rapid delivery of the initial Go-Live
release, which was defined by the prior Project
Assignment stage.

121

Prototype-to-MVP 12

We continue following the philosophy that
we will leverage the no-code visual tools as
much as possible. This means that the MVP
design steps will be performed visually inside
the no-code platform (as opposed to making
specifications in separate design docs). Unlike
traditional software development, we aren’t
starting from scratch. First, no-code platforms
provide a significant amount of the underlying
infrastructure. This allows you to focus on
the business functionality that you want to
build, rather than worrying about building
technical and application frameworks. You
also accelerate the process by “inheriting” the
working prototype that was built during the
earlier Design and Prototyping stage. We start
by extending the available prototype, which
allows us to save a lot of time and minimize
the risks of misalignment.

Another benefit of working from a prototype
is that needed features can typically be built
almost immediately and incrementally on top
of the existing app prototype, allowing you to
avoid lengthy delays waiting for a reviewable
version of the app. As new micro use cases are
added, you can usually publish the working
prototype for quick review and feedback.
This enables a much more immediate and
continuous feedback cycle throughout the
building process.

No-code
Feature
Development
Approach

The No-Code Playbook

What is included in the no-code feature development? Similar to before — during the
prototyping phase — it will typically focus on these key areas:

MVP Structure

UX/UI Workflows and
business logicThe basic UX will have been established by the

prototype but will now be extended by adding
individual features/micro use cases. This will
add more depth and completeness (by adding
forms or screens needed to complete a full
process) and desired usability enhancements
(e.g., streamlining the user flow throughout the
application by combining steps or automating
the population of fields). It will also add
additional business rules and validation logic
needed for the MVP. Finally, the UX will also
likely undergo some form of brand/UX review
and may require updates to ensure consistency
with overall corporate standards. Also, during
the earlier prototype stage, we mentioned that
data models should not be in focus.
At this stage, it’s time to establish the right
data structure and the necessary dependencies
between the objects.

You will extend the business processes (both
human and system processes) that were
defined in your prototype by adding more
detail around subprocesses and tasks. This will
also typically introduce more nuances around
“edge” conditions and process variations that
might be suggested by different departments
or business units. Error conditions must also
be anticipated to handle cases where there are
failures or process exceptions. Allow these to
be handled gracefully.

123

Prototype-to-MVP 12

Keep in mind that while the no-code tools will be used to define the core of the no-code
application, they may be integrated with other components of the solution that you identified
during the Options Analysis stage (e.g., with either packaged application functionality or with
custom-developed components). This will introduce the need to use other development tools as
part of a fusion team approach. However, always remember that the goal is to utilize no-code
capabilities wherever it’s possible. Professional software development tools should be used only
in cases when no-code development cannot be applied.

Integrations Dashboards and
analytics During prototyping, the internal systems that

needed to be integrated with the no-code
app are often “stubbed” for simplicity but,
in this phase, the actual integrations will be
introduced. If data is accessible in systems
with preexisting connectors or modern APIs,
this may be simply a no-code configuration.
Often, however, this may require some
participation by software engineers as part
of either a fusion team or perhaps sourced
through the Center of Excellence.

At this point, you need to extend the
dashboards and reports you’ve built in the
prototype so that they include real data and
cover key aspects that are needed to analyze
the performance of the business use case.
Keep your focus on adding key dashboards
with defined success criteria to the MVP as
this helps streamline the adoption of the app,
specifically by the leadership team.

The No-Code Playbook

The ability to break down larger functionality into a stream of small features/micro use cases
is powerful but, to be successful, it requires a deliberate approach to manage the flow of
work effectively. We recommend the Kanban approach, which we believe is optimally suited
for no-code development. Kanban is one of the common flavors of modern Agile software
development, but its origins trace back to advances in lean manufacturing pioneered by Toyota
in the late 1940s. It is a “just-in-time” approach to managing complex workflows. There are a
lot of primers on Kanban available for review. We don’t want to spend time duplicating these
guides, but we do want to make sure you understand one of Kanban’s core practices: The use
of visual boards that breakdown work into a set of “cards” and “columns” (e.g., requested, in-
progress, done). This is a highly visual approach to managing and tracking work items that
allows the development team to pull work from a defined backlog (to-do list) and easily
track and communicate updates. Kanban also provides both the development team and key
business stakeholders with visibility into the scope and progress at any time, which facilitates
collaboration and discussion about priorities.

Many software development teams may be familiar with Scrum (a type of Agile methodology).
However, we recommend Kanban over Scrum for no-code development for the following
reasons:

•	 Kanban builds a continuous “push” delivery model where teams release value as soon as they
are ready, while Scrum organizes work in Sprints and defined Release Trains.

•	 Kanban also offers the flexibility to use the method on top of existing workflows, systems,
and processes without disrupting what is already in place. Scrum can require adopting a
nontrivial number of new systems and processes, which can be overwhelming for a business-
led no-code development.

•	 Finally, Kanban minimizes the need for practical experience and specialist roles (e.g., Scrum
master, product owner), which also makes it easier and faster to adopt by business teams.

Kanban progress tracking

Software development cycles
(If needed for a fusion team model)

We keep emphasizing that you should be focusing on using no-code tools to fully exploit the
power of the platform. Using no-code tools wherever possible drives greater productivity and
lowers the total cost of support and maintenance. You’ll want to revert to custom development
only when you have specific needs that call for the fusion team model. Don’t forget, the
Application Matrix will have identified your appropriate delivery mode type. You may have
included software engineers on your team (as part of a fusion team delivery model) or you may
seek software engineer support from the No-code CoE.

125

Prototype-to-MVP 12

Depending on the size of the custom software components, this may dictate some of the
processes that the software engineers may follow. For small development scenarios, it may be
easiest to simply have them join the cadence of the no-code team and use the Kanban Method
outlined earlier. For larger software development projects, the software engineers may identify the
need to follow other traditional software development methods, such as Scrum, to manage their
work before it gets integrated into the no-code app.

Scope and change management

As you further build MVP features, it’s common to continue to elaborate on lower levels of
depth of use cases and identify additional requirements (based upon the feedback techniques
that we’ll discuss in the next chapter). However, while it’s good to be responsive and agile,
you must also be disciplined throughout this process of managing scope and applying change
management practices. Clearly identify and track new feature requests as they are identified and
maintain a focus on deciding whether they are in for the MVP.

Here are suggested criteria for deciding which features should be included in the MVP:

•	 Timeline. In the prior stage, you established the timeline for the MVP and allocated
resources accordingly. It’s recommended to adopt a timeboxed approach for hitting this
date. As you identify and elaborate scope items that could possibly exceed an expected MVP
timeframe, the no-code team should reprioritize the defined scope and target fewer features
and shorter time-to-market.

•	 Business value. The end users should be able to start using the MVP capabilities and receive
the expected business value as outlined by the business use case. Any newly identified
features that are not critical to supporting these business outcomes should be deferred to the
backlog for future consideration.

•	 Crystal clarity of the use case. The ability to execute is important, and the MVP should
include only those capabilities that are fully aligned, clarified, and don’t require additional
research and approval. Vague and not fully confirmed requirements should be taken out of
scope and deferred to the backlog until they are clarified or matured.

The most important criterion in the no-code development process is “aggressive” decision-
making and prioritization processes during the MVP scope. If wrong decisions are made or
incorrect prioritization is allowed, the MVP release timeline could possibly be extended to
months, dramatically increasing opportunity cost. When you are working on the scope, it’s
critical to focus on the capabilities that can be released within days or weeks to deliver value to
the business. So, while analyzing each feature, the no-code team should be asking
themselves the following question: Can the business get value without it?

The No-Code Playbook

Software testing

Testing is important to ensure the quality of
software, but the approach to your testing
methodology does change a bit with
no-code. Traditional software testing methods
anticipate that many software defects can
be introduced during the low-level coding
process and set quality gates and validation
steps to identify and remove them. Defects
will certainly still need to be removed from a
no-code app, but the abstraction layer of the
no-code platform tends to provide guardrails
that help prevent you from making lower-
level technical defects.

During the current Prototype-to-MVP
your focus should be on testing end-to-end
scenarios that validate the end-user features
and user journeys to be delivered in the app.
Depending upon the number and complexity
of the integrations, you may also need to
invest time in API testing, especially for
newly created data exchanges. Note that the
user acceptance test is important but not in
scope during this stage. It will be covered
later as part of the “First Release” discussion.

What happens to unit testing? Well, in
no-code, traditional unit testing activities
are not typically needed. Unit tests are short
program fragments that are written and
maintained by the developers that exercise
some narrow part of the product’s source
code and check the results. The outcome of
the unit test either passes or fails. Developers
will typically write many unit tests to cover
the application modules or features, grouped

into an overall test suite. This can require a
significant amount of development effort but
is a key part of maintaining the quality of a
custom app. In no-code, however, there are
few (if any) original “units” of code. Instead,
each of the smaller components of the app is
usually a prebuilt unit that is supplied by the
no-code platform and assembled into higher-
level functional components (e.g., forms,
workflows, etc.). This allows teams to put
focus on validating business rules and end-to-
end user scenarios rather than having to unit
test for minute defects that were accidentally
introduced during coding.

Likewise, technical infrastructure and
environment testing are also abstracted
away from the application developer. You do
not need to worry about running these test
scenarios because once the no-code platform
is established, it typically hides all the
infrastructure and most of the environmental
configurations away from the developer.

Finally, one last difference in no-code testing
is that it tends to also be performed more
incrementally, rather than waiting until the
entire MVP is complete. You don’t defer the
end-to-end testing to the very last minute.
No-code encourages conducting scenario
testing as soon as they are ready to be
validated. This doesn’t eliminate the amount
of testing, but it often allows you to spot
defects earlier in the process.

If the answer is “yes,” then consider it out of the scope for the MVP release and move it into
the backlog for later consideration. The team should also focus first on features that are easy to
implement relative to the business value they provide. Prioritize features that are low-cost to
implement and provide high business value.

127

Prototype-to-MVP 12

Final
Takeaways

This was a lot to cover, but “don’t lose
the forest for the trees.” The most
important thing to take away is to
stay focused on releasing the MVP
as quickly as possible. It doesn’t
have to be perfect — it shouldn’t be
because the quest to find perfection
will distract you from the core
mission. Instead, it will help if you
embrace the power and speed of
no-code platforms — take advantage
of them by adopting an efficient,
lean, and iterative approach that
fully uses its unique strengths in
accelerating development. Speed
is essential to keeping up with the
demands of the business, and a
no-code platform can help you
address these needs.

Now, concurrent with the MVP
development discussed in this
chapter, you should also be collecting
feedback. We’ll explore this parallel
activity in the next chapter.

12Prototype-to-MVP

The No-Code Playbook

“Feedback is the breakfast
of champions”

Ken Blanchard

129

Feedback Loop 13

Feedback
Loop 13
Stage 6

GO-LIVE

The No-Code Playbook

When it comes to being successful in business, the impact of collecting (and responding to)
customer feedback cannot be underestimated. Continuous focus on listening to your customer
and responding to their needs will drive higher levels of customer satisfaction. The same is also
true for being successful with your no-code application — your ability to listen (and respond)
to quality feedback from your users and stakeholders will significantly improve your odds of
exceeding expectations.

Now, in traditional software development, user feedback is typically part of a user acceptance test
(UAT), which comes at the very late stages of the development lifecycle. This classic approach to
UAT has some typical challenges:

•	 It delays user feedback until too late in the cycle, when it can be expensive to address. There
is always pressure on the need to “go live,” resulting in user feedback being ignored or
deferred.

•	 UAT is always rushed and time-compressed. If there are delays in finishing
the software, it may delay turning the software over to the UAT, but there’s

still pressure imposed on the business function to release the software,
resulting in either overwork or cut corners — or usually both.

•	 If there are major alignment issues discovered
late during UAT, this can sometimes derail
the project. You create a no-win situation
where it’s impossible to go live (because of
misalignment), and you have no other option
but to go back to requirements or design

activities to restore the project. This results in
a tremendous amount of wasted time and effort.

131

Feedback Loop 13

Rather than delaying feedback to the end, no-code allows you to take advantage of a more
continuous feedback model (as shown in the following figure). Instead of feedback only
happening at one point in time, we collect constant interactions and approvals by the
stakeholder to ensure alignment throughout the development process. This may happen as often
as a few times a day! So, this stage actually runs concurrently with the prior “Prototype-to-
MVP” stage.

We’ll briefly touch on each of these steps and provide guidance on performing these as
effectively and efficiently as possible.

Select and engage
stakeholders

1

Build
micro use cases

2

Review
micro use cases

3
Triage Go-Live

scope

4

Address
feedback

5

The No-Code Playbook

Select and engage
stakeholders
One important consideration is selecting both
the most effective and also the right number of
stakeholders to include in the feedback process.
While more feedback is always good, identifying
the wrong stakeholders (those who lack the right
domain knowledge or perhaps are not authorized to
make decisions) can waste a lot of the team’s time.
Also, the complexity of reconciling user feedback
increases geometrically when there are more “cooks
in the kitchen.” So, try to avoid having extended
teams of stakeholders to define and approve the
scope as this usually leads to a more complicated
process and an extended timeline.

Therefore, it’s recommended to minimize the
number of stakeholders involved in the MVP. Ideally,
you’d nominate a single stakeholder/decision-maker
who would represent the user population. This will
streamline the decisions and prioritization of scope
during both the initial MVP and also during the
ongoing feedback prioritization. The stakeholder
you select should have a good understanding of the
business process and also have sufficient authority to
make decisions related to the functionality. Finally,
while the stakeholder does not need to be deeply
technical, they should have an understanding of
technology and its ability to impact the business.

Note that while you may limit the number of official
stakeholders, it is highly recommended to include
users directly on the no-code development team.
This provides a way to properly embed a lot of
practical and operational knowledge of the business
function into the no-code development itself,
ultimately improving quality and increasing the odds
of better alignment with the no-code stakeholder.

Step #1:

133

Feedback Loop 13

Build and review
micro use cases
As discussed in the last chapter, building the
no-code app can be done highly incrementally
as you add new micro use cases into the
application. This allows you to “work in”
review sessions throughout development.
Reviews with your no-code stakeholder to
demo the current version of the prototype
can be performed on a completed micro
use case without a need to wait for either
MVP or sprint completion, which is the
case for Scrum. As soon as the use case/
features are completed to a point that
they can be demonstrated, you can start to
collect feedback in parallel with continuing
development in other areas. Generally, you
should plan for feedback sessions at least
a few times per week to keep up with the
needed pace of no-code development. The
feedback session should focus on reviewing
the prototype and discussing business
requirements for micro use cases.

We also previously discussed the use of the
Kanban Method to manage the building of
new micro use cases. In addition to helping
organize and structure the building process,
the Kanban Method also provides benefits for
continuous feedback. The Kanban Method is
all about promoting transparency, encouraging
feedback, and holding regular review
meetings, making it ideal for Feedback Loop
activities since your stakeholder will have
full visibility of the work being reviewed and
where it fits within the broader MVP scope.

Steps #2 and 3:

The success of the Feedback Loop stage lies in
constant collaboration between the no-code
team and stakeholders. It’s possible to collect
feedback from the user and tweak the current
no-code app almost immediately with these
capabilities to gain alignment and progress
with the development.

That said, as you progress, it’s also essential
to stay focused on the MVP and not veer too
far off track. Prioritize any new requests for
capabilities that arise during the feedback
sessions with the same approach you used
to define the MVP. If something is critical
to the MVP and can be accommodated in
line, then it’s best to address it immediately.
However, all requirements that have not been
included in the MVP should be placed into
the post-MVP improvement backlog that will
be reviewed and processed in the Incremental
Improvement stage.

Step #4

Triage Go-Live scope

The process of collecting and addressing
feedback doesn’t stop at the initial release.
You’ll continue to address feedback that you
receive from end users in production and
follow a similar process for responding to it.
This will be discussed more in the Feedback
Collection stage (in Chapter 17).

Address feedback

Step #5

The No-Code Playbook

Feedback
Loop
Benefits

There are many benefits of this continuous feedback
loop model — let’s briefly review a few key perks:

•	 It enables addressing problems more quickly. If
you identify missed requirements or incorrect
use cases using this approach, the no-code
team can focus on resolving issues while
development is still underway. This reduces the
risk that problems will continue to proliferate
and snowball, and you’ll be better positioned to
avoid negative downstream effects.

•	 Improved (re)alignment with the business
process. If you’ve done a good job with the
earlier Business Use Case stage by documenting
the core business vision and success factors,
then you’re off to a good start as it relates
to alignment with the target state process.
However, even with this alignment, it’s still
possible to “drift” as the project moves into
greater complexity and detail. You may find
that you’re not completely addressing the
highest-priority use cases in the way that was
intended. To ensure you’re delivering on the
needs and expectations of the business function,
you must adapt and realign your understanding
of the business priorities and scope as you go,
which requires collecting continuous feedback
and making course corrections.

•	 Getting frequent feedback encourages
engagement. You want your no-code
stakeholder (and the business function more
broadly) to be deeply committed to the project.
It’s essential they feel a part of the project
team, even though they may not be in the
development activity itself. Getting frequent
feedback from your stakeholder —
and genuinely incorporating it into your
daily changes — strengthens communication
and collaboration in both directions. It also
demonstrates how much the no-code team
values their input in the project delivery.

135

Feedback Loop 13

In no-code development, gathering
feedback should be an ongoing
and continual process. This allows
you to respond to feedback more
readily and ensures alignment with
stakeholder needs. You won’t know
for certain what the user wants
unless you ask — and the sooner
(and more often) you ask, the more
successful you will be!

You’ve finished development and
revised it with a continuous feedback
loop — you’re almost ready to
release. However, before you deploy,
it’s important to ensure the app has
met the required governance and
compliance reviews. We will discuss
this in the next chapter.

13

Final
Takeaways

Feedback Loop

The No-Code Playbook

“Measure twice, cut once”

English proverb

137

Feedback Loop 13

Governance
Сhecks 14
Stage 7

GO-LIVE

The No-Code Playbook

Just because no-code allows for rapid,
incremental updates does not give you a
pass to ignore governance requirements.
Proper technological governance is essential
for maintaining security and governmental
compliance at all times. The cost of skipping
governance checks can have significant
impacts on the business’s function —
becoming noncompliant can result in fines,
settlements, business disruption, productivity,
and revenue loss. Furthermore, the damage to
a business’s reputation can be irreparable. So,
as the proverb goes, “measure twice, cut once”
to make sure the cut you are making is the
one you want! Make sure you have thoroughly
reviewed your application for governance
requirements before releasing it into the wild!

Now, let’s begin by identifying and reviewing
some of the more common types of
governance you will encounter:

1.	 External compliance. Checklists to
assess compliance with external laws,
guidelines, or regulations imposed by
external governments, industries, and
organizations.

2.	 Internal compliance. Checklists imposed
by internal audit teams or committees to
enforce adherence to rules, regulations,
and practices as defined by internal
policies and access controls.

3.	 Security. Checklists to protect your
corporate information resources from
external or internal attacks.

4.	 Data governance. Checklists to assess
how sensitive corporate data is managed
and secured.

139

Governance Checks 14

External Compliance
We’ll start by looking at external compliance reviews. These are reviews conducted by a
designated entity to assess whether your application complies with the laws, guidelines, and
regulations set by external governments, industries, and standards organizations. Usually, this
will apply to applications that contain sensitive customer data, especially healthcare-related
information or financial data (e.g., credit cards and bank accounts). The external auditor will
usually work with someone in IT or Operations, so be sure to build time for these reviews
during the Project Assignment stage.

The range of external compliance standards can be quite varied depending upon industry or
geography. The following is not a complete list but provides a representative set of examples of
compliance requirements that may be applicable to your application:

General Data Protection Regulation (GDPR)

If you are building an application that will
be capturing and manipulating the personal
contact information of European Union
(EU) citizens (for example an application
used by sales and marketing teams), you need
your application to be approved by the Data
Protection Officer.

Health Insurance Portability and
Accountability Act (HIPAA)

If you are in the healthcare vertical and the
application is touching patient-sensitive
information, the no-code team should be
working with a relevant approver who is
ensuring that the appropriate data privacy and
security regulations are being met.

The No-Code Playbook

Internal
Compliance
Internal compliance reviews develop an independent assessment of the effectiveness of an
organization’s risk management, processes, and general governance. Unlike external compliance,
these reviews are not mandated by an external entity or legislation. Instead, they are the
organization’s own way of performing internal quality measurement and management. The goal
is to collect accurate information internally about the team’s performance, governance, and risks.

Payment Card Industry Data Security
Standard (PCI DSS)

If you are building an application that will
be touching sensitive financial information
like credit card data (e.g., customer case
management application in financial services).

Know your customer (KYC) and anti-money
laundering (AML)

If you are building an app where a financial
institution will be onboarding new clients, you
may be subject to regulations that require you
to ensure that no monies you are receiving
have come from criminal or terrorist activity.
Your compliance officer will need to ensure
that checks are performed to specifically verify
the identity of your customers and investors
together with their financial activities and any
risks they may pose.

These are just some of the more common external standards or regulations that are specific to
your industry. Some of these may apply at the platform or data center level (like SSAE 16)
but not require being reviewed per individual application. In other cases, app-specific reviews
may be required. So, it’s recommended you collaborate with IT, your IT security team, or with
the CoE, if applicable, early to identify the relevant external governance checks that will be
applicable to your app, when they must be performed, and begin planning early to prepare.

141

Governance Checks 14

Management audits

These focus on assessing whether a team or
the company as a whole is hitting targets
related to the goals set by management. These
audits are typically conducted by an internal
audit team and could include a review of the
team’s quality control processes or compliance
with company legal policies or diversity
standards.

IT audits

These focus on the infrastructure, technology,
and systems that an organization has put in
place. These may be assessed by IT or by an
external entity. This type of internal audit
may help you prepare for some of the specific
security or data governance reviews discussed
in the later sections. An example of IT audits
could include reviewing internal systems for
their use of sensitive customer data or sensitive
HR-related information. These audits might
also be used to identify data conflicts between
different teams.

One very important part of an IT audit is user
access management. Having the right set of
user access permissions defined for your app
can be challenging given changing roles and
responsibilities and the regular onboarding
and offboarding of employees. An IT audit
(typically an internal assessment by IT) will
define controls for user access management to
both protect the organization from risk and
help decrease costs and inefficiencies. User
access management controls help ensure that

users only receive authorized access privileges,
meaning they only have access to what’s
required to do their job. Should their role
or responsibilities change, their permissions
should be promptly revoked.

Operational audits

These have the widest focus of the internal
audit types as they are concerned with
assessing the efficiency and effectiveness of
your organization’s internal controls. Typically,
the auditor focuses on high-risk areas that
present a threat to the company if something
goes wrong. For example, operational audits
might review whether you’ve provided too
much (or incorrect) information to the
customer as part of a sales process. They could
also look at whether teams are accidentally not
complying with how invoices and payments
should be reconciled. All of these are examples
of internal audits that can be performed
in-house if the person or team conducting it
is trained in the field. Your internal auditors
need to be able to gather evidence and reach
their conclusion free of outside influence.
Thus, internal compliance checks are typically
performed by an internal audit team that is
independent, objective, and free of influence
from the team or department being assessed.

Here are a few examples of internal audits you may encounter:

The No-Code Playbook

Security
Security risks and cyberattacks are increasingly
becoming a board-level priority for most
organizations, especially with security
threats increasing because of the pandemic
and the shift to hybrid work environments.
Approximately 80% of security and business
leaders say their organizations have more
exposure to cyber threats today as a result of
remote working1. It’s more imperative than
ever before to prioritize security reviews
and take preemptive steps to protect against
significant security threats.

Typically, an organization’s chief information
security officer (CISO) and/or security
department will have defined a standard
collection of processes and technologies
that work together to help strengthen a
company’s overall security profile. Adherence
to these standards will be assessed during a
security review. A security review should be
a collaborative process between the security
team and the no-code team to identify
security-related issues, determine the level of
risk associated with those issues, and make
informed decisions about risk mitigation or
acceptance.

While there are well-defined security
checklists for software development, such as
the “OWASP Top 10” guidelines2, they are
not as applicable for no-code development as
many of the common security mistakes can be
prevented and automatically abstracted away
by the no-code platform. To be clear, proper

security practices must still be followed,
but this is the responsibility of the no-code
platform vendor. No-code platforms can
significantly improve adherence to security
guidelines since they enforce a more standard
way of building and deploying software.
They remove the opportunity for developers
to accidentally write insecure code. Instead,
no-code development reduces the risk of
insecure apps by enforcing more consistent
usage and app design patterns than traditional
software development. Note that additional
security reviews will be required the first
time a no-code platform is implemented to
validate the security profile of the platform.
But subsequent use of the no-code platform to
build individual apps will likely be streamlined
because they will follow a consistent pattern.

However, even if the no-code platform
handles some of the more common and basic
security practices for you, it’s still critical
to work closely with IT and, if applicable,
the CoE to understand what reviews and
checklists still apply and ensure early
scheduling with the appropriate security team
to avoid delays.

1 Beyond Boundaries: The Future of Cybersecurity in the New World of Work, Forrester
2 OWASP Top Ten, OWASP Foundation

143

Governance Checks 14

Data
Governance
Data governance is the final category
of governance. Data governance is a
defined approach to data and information
management that is formalized within
an organization as a set of policies and
procedures. These governance checklists
encompass the full life cycle of data —
from acquisition to use and disposal. Data
governance checklists are essential to control
how sensitive corporate data is managed and
secured. This will include considerations on
data governance, access rights, quality, and
managing risks around data loss.

Many organizations have recently gone
through initiatives to comply with the GDPR.
While this is a regulation specific to the
European Union, many global companies are
using it as a framework to help drive better
customer data management practices.

The no-code team will typically work with
data owners and the data governance group to
review how your organization’s data policies
will impact the app they’re building. Such
reviews are typically focused on security
and privacy protection, data quality, access,
sharing, dissemination, and security and risk
management.

The No-Code Playbook

Properly scoping the effort

Many of the governance checks (especially
internal ones) may require varying levels of
effort and time commitments based on the
criticality of your application. Some apps
may not require many reviews while others
may need significant time investment. The
exact scope and necessary governance checks
should be defined using the Application
Matrix during the Project Assignment stage.
At that point, the no-code development team
should engage the required roles for each type
of check. Later, when you are preparing for
the initial release, the no-code team should
confirm that none of your iterations with new
capabilities have impacted the Governance
complexity requirements. They can do this
by applying the Application Matrix to the
completed MVP app (as it has iterated).

Planning ahead

Once you’ve identified the applicable
governance checks, then the no-code project
team (usually supported by IT or the CoE)
will work with an internal audit team or
external auditor to perform the review.
The frequency varies: most require annual
certification, but others may be dictated
on a different schedule. Reviewing for
governance should not be an afterthought
in the development process. While the final
reviews for governance may need to wait until
after the app is completed (near the end of
the Go-Live Phase), you should have already
scheduled the required reviews and started
collaborating with the designated approvers
during the Project Assignment stage.

Early collaboration

One of the other benefits of scheduling governance early is that it facilitates very early
collaboration with the appropriate approver stakeholders (typically in IT or Ops) to anticipate
and mitigate significant issues. Ideally, you should proactively be consulting with the identified
Governance team from the beginning of the Go-Live Phase, so that you streamline and reduce
downstream issues found later in the lifecycle.

Governance Considerations
Regardless of the type of governance check, there are some common considerations and best
practices to keep in mind:

145

Governance Checks 14

Keeping up with the speed of the
business is important but so is
ensuring the proper governance
of the application. Don’t move so
quickly that you fail to meet security,
compliance, and data governance
checks. Speeding through these
compliance checks could result in
significant business penalties and
consequences, potentially eclipsing
the gains achieved through the
no-code solution. While you may
feel pressure from stakeholders
to release the app as soon as
possible, doing it without heeding
governance could result in a
business loss that could be painful
and expensive to remediate. Don’t
overlook the essential governance
checks that will measure your
success.

Congratulations! Now that you’ve
finished your governance reviews,
you’re ready to release to production!
But wait, don’t forget to consider
the essential final activities of a
successful release that we discuss in
the next chapter.

Final
Takeaways

14Governance Checks

The No-Code Playbook

“You never get a second
chance to make a first
impression”

Popular expression

147

First Release 15

First Release 15Stage 8

GO-LIVE

The No-Code Playbook

Congratulations! You’ve passed the
governance checks, and you’re ready to
deploy the initial MVP release of your
no-code app! You’re almost done, but
don’t forget some of the most essential
final considerations. You moved fast and
have almost completed the journey of
building your first app, so don’t stumble
at the final stage. Taking these final
measures to prepare for release will help
set up your app for success and ensure it
makes a good first impression with your
users.

The stages we covered in the No-code
Lifecycle have ensured the application
has met all of the stakeholder, user, and
governance requirements. However, there
are still some final steps to prepare the
business function to use the application,
including the following:

•	 Documentation and application
guides

•	 Deployment

•	 Validating environments

•	 Final user acceptance

•	 Support and monitoring

•	 User onboarding and enablement

We’ll briefly review each of these and
offer some tips and guidance on each.

Documentation and
application guides

Documentation and application guides can
vary widely depending upon the complexity
of the application. For a simple app, it may
be enough to have a walkthrough guide for
a first-time user, whereas for a business-
critical enterprise application, you may need
full-blown documentation that describes
all features, functions, and operations. Also,
consider that you may want to put more
user support and online documentation into
the app itself through in-app guides, hints,
tips, and walkthroughs to support the user
navigation. If the app is simple and intuitive
with support for users as they get going, they
may not need to rely on traditional external
documentation.

It’s worth noting that the building of
documentation is often started late during
traditional custom software development as
the teams may not have access to working
software until late in the development cycle.
In contrast, with no-code development, there
are early “working” versions of the app even
during the prototyping stage. While the app
will progressively evolve over time, you can
begin planning the development of needed
content even at the early stages of the lifecycle.

149

First Release 15

With modern software development, there
has been a trend toward more complete
automation (referred to as “continuous
deployment”) of the deployment activities to
take manual steps and points of error out of
the equation. Most no-code platforms depend
on continuous deployment approaches as part
of their automation (this set of functionalities
is often called Application Lifecycle
Management or ALM) to allow for more
rapidly moving no-code applications through
environments. When an operator needs
to move a no-code app to production, this
usually involves nothing more than approval
and a click of a button.

However, moving an app into production still
must be performed with care and in concert
with appropriate validation steps. Deployment
should be released from quality assurance/
pre-production to the production environment
only after the final acceptance testing has
been performed. Then, following the release
to production, it’s important to still verify the
solution changes operate as expected before
significant users or customers are onboarded.

Deployment

Preparing and verifying
environments

Until now, most of the focus has been on
development or QA activities as you’ve
largely been working in a small number
of nonproduction environments. But
it’s important to carefully plan out your
needs regarding the types and numbers of
environments so that you can respond to
change. Once the full set of environments is
provisioned, you’ll need to test and verify that
the environments are ready.

Typically, you may have several of the
following environments provisioned, although
the exact number and configuration will vary
based upon the application complexity.

15First Release

The No-Code Playbook

Sandbox (SANDBOX)

This is an environment used for quick
experiments and demos that won’t affect the
work of other developers on the team. The
sandbox can be used for early ideation and
prototyping before the MVP release officially
starts.

Development (DEV)

This is where the primary development for the
current MVP release is performed. You may
have multiple teams depending on the size
of the application but, ideally, they are still all
working in the same environment.

Quality assurance (QA)

As feature development is completed, it may
be moved into a separate QA environment to
allow for more detailed and controlled testing
(e.g., integration or system testing).

Staging/preproduction (PREPROD)

Once testing has been completed, the app
will often be moved into a controlled staging
environment that closely mirrors production.
Staging will mimic similar volumes of data,
and system resources will be sized to mimic
production response times. This is often used
for final performance simulation and user
acceptance testing.

Production (PROD)

This is the actual production environment,
where end users will directly be onboarded
and use the live application.

You should use the Application Matrix as a general guide to determine which (and how many)
of the environments may be required:

•	 “Simple” apps may only need two environments (DEV and PROD). With simple
complexity apps, you might use a single environment for both building and testing and then
deploy it into production when you are ready for Go-Live.

•	 “Medium” and “Advanced” apps typically represent more business-critical applications and
may require additional environments (e.g., multiple QA environments to support parallel
releases to be tested at once, a PREPROD production mirror). Having more environments
adds some incremental complexity, but it also allows for more flexibility in testing — you
can conduct final UAT, smoke testing, and regression testing in controlled environments
before being released without impacting the development underway. It also allows fixes to
be made rapidly in PREPROD and released without having to worry about the accidental
release of work-in-progress changes.

151

First Release 15

Final user acceptance

As discussed earlier in the Feedback Loop
Chapter, users should be involved throughout
the process to supply continuous feedback.
Incorporating user feedback along the way
makes the final end user approval a less scary
event (e.g., will it fail to reach signoff?) and
ensures that most of the buy-in and alignment
has happened along the way. However, final
user acceptance and stakeholder approval
should still be attained prior to the release.
Consider this a final check to make sure that
the no-code stakeholder and business function
are indeed ready for the app to go live. Note
that this is especially important when the
Application Matrix has assessed business
complexity as “medium” or “high.”

The focus of the final user acceptance should
be to validate the highest-level business
requirements (as defined in the business use
case) and obtain approval to release. This is
not meant to be a substitute for lower-level
functional or user testing, which should have

been validated during the prior Feedback
Loop stage. This will help eliminate issues
resulting from data or environmental
inconsistencies.

Be very careful to manage expectations on
feedback gathered during this final user
acceptance effort. The primary focus is to
validate that the app is ready for deployment
in production, not to gather more feedback
on possible enhancements or improvements.
If any critical “release blocker” defects are
identified, it may be necessary to hold the
release so that they can be fixed. However,
at this point, the bar should be very high for
accepting any new requests. It’s essential to
triage the feedback and only accept the most
critical items at this late stage. Everything
else goes to the post-MVP backlog and
will be addressed as part of the continuous
improvement cycle.

The No-Code Playbook

User onboarding
and enablement

Once a new no-code app is deployed, you’re
ready to give users access to the app! Some
of the user setups may be done automatically,
for example, existing employees or customers
can just log in and go. In other cases, users
may need to take some action the first time
they use the application. However, even if
user onboarding is mostly automatic, you
may want to control the pace of bringing new
users to the new system. Consider whether
phased or staged onboarding is needed to
give the business function time to gradually
adjust to using the new solution. If a phased
approach is desired, you can break up
deployment by region or team, for example. If
some remaining defects exist in the no-code
app, having a controlled onboarding ramp
allows for easier fixing of initial issues before
significant numbers of users are live on the
new app.

Even if the software is working perfectly,
process or operational changes may be needed.
For example, you may learn from the earlier
users that enhancements to training or
procedure documents will help them be more
effective in their daily use of the no-code app.

Support teams may not be fully ready to
handle the volume of inquiries about using the
new application. Giving them an initial period
of light usage can help with training and
ramping up knowledge about the new app.

Support and
monitoring

Your organization will typically adopt
Information Technology Infrastructure
Library (ITIL) and IT Service Management
(ITSM) methods and practices as the
overall model to provide support for the
application. However, depending on the level
of application complexity, your organization
might be leveraging all 10 processes of ITSM
or just have one part (i.e., an individual
providing ongoing help for simple apps).
Monitoring is a form of proactive support
where an organization can set up a relevant
process to monitor critical indicators of the
application’s health to respond to events in
real time. Such indicators may include time to
execute critical actions, the opening of pages,
and other triggers.

Note that, unlike custom development,
no‑code platforms should abstract the
individual app teams away from having to
manage the health and operations of the
underlying platform infrastructure. This
would include things such as maintaining a
disaster recovery plan, performing backups
of system data, ensuring service redundancy,
monitoring loads, and stress testing. This is
critical at the no-code platform level and will
likely be supported by IT working closely in
concert with the no-code vendor. However,
the individual no-code teams should not have
to perform these activities for each app that is
built on the no-code platform.

153

First Release 15

As end users are onboarded, there is also usually some associated enablement activity required
to support effective adoption. Besides traditional training and enablement techniques, it is
recommended to adopt a model of continuously retraining the users based on the “Everyday
Delivery” approach (more frequent smaller enablement is more effective with an app that
is frequently being updated). It won’t be needed to set up training every time when new
functionality gets deployed. It will depend on the size and the impact of the change. However,
for frequently changing apps we would suggest setting up regular monthly “what’s new” reviews.
Also, it is suggested to use certifications and testing to confirm their ability to fully utilize the
system specifically for complex enterprise-grade apps.

Releasing your app to production can be exciting, but don’t overlook the
final critical steps. To be successful, you need to secure signoff from the
business function and prepare both users and technical environments for
the release. The final details matter — and how you introduce your app to
your users will make an impression that colors how they judge the success
of the app. It’s worth the extra effort to follow these final steps.

You’ve done it! You’ve successfully finished the journey to MVP. However,
now the real work begins as you manage the continuous evolution of the
app. We’ll discuss this as we start the final Everyday Delivery Phase of the
lifecycle.

Final Takeaways

The No-Code Playbook

“To succeed in this world,
you have to change all
the time”

Sam Walton

155

Feedback Loop 13

Introduction
to Everyday
Delivery 16

EVERYDAY DELIVERY

The No-Code Playbook

No-code
Differences
The Everyday Delivery Phase provides
value delivery in small, quick, continual
updates. This addresses some of the
common challenges of traditional software
development. Previously, software
development projects often attempted to
comprehensively document all requirements
upfront and then spent months methodically
building and testing each of the required
features until the fully completed application
was ready. This lifecycle is organized in
sequential waves — analysis, design, coding,
testing, and implementation. Hence, it is
referred to as a “waterfall” approach. Waterfall
lifecycles maximize the potential value to the
stakeholder by saving up features into one
big release (perhaps quarterly or annually).
However, the risks of the final release delivery
can be higher, and the sequential handoffs
make it difficult to adapt to changes that may
occur during the development releases. It also
means that end users must sometimes wait a
fairly lengthy period to receive enhancements
they may have requested.

Agile methodologies for custom development
have popularized taking a more incremental
approach, whereby you break down larger
releases into smaller releases of features.
Depending on Agile’s flavor, each release’s

The ability to continually evolve
is critical for your business and,
therefore, your no-code app as well!
Now that you’ve delivered the first
release, this isn’t the end. In fact, this
is just the beginning. It’s critical to
follow up on the first go-live release
with a disciplined approach to enable
constant feature evolution. You don’t
need to wait to batch your evolution
into a big release. Ideally, your updates
should be delivered to users as soon
as they are ready. Response to user
requests can be delivered in small,
quick, incremental updates on a
frequent basis — perhaps daily. In this
chapter, we’re introducing the final
phase: “Everyday Delivery.”

157

Introduction to Everyday Delivery 16

duration varies. The Scrum version of Agile
typically defines shorter “sprints” of two to
three weeks in duration. However, not all
sprints may be releasable to end users as the
features built in each sprint may be a part
of a broader user scenario that takes more
time to fully complete. So, Agile can often
lower delivery risks, improve quality, and
also address the challenge of responding to
changes since the team can adapt and change
the plan during each sprint. However, it does
not necessarily build out features any faster
than traditional approaches. Users will usually
get value delivered sooner, but they will still
have to wait until the next sprint or iteration
is complete.

Everyday Delivery builds on concepts from
Agile but does not force you into a strictly
defined release duration. Instead, you can
release when you are ready and, ideally, as
fast as you can. You can get feedback from
your stakeholders and end users, and you
can respond more quickly. Development
is significantly accelerated thanks to the
power of no-code capabilities. As a result,
new features can be built and released more
quickly. This creates an opportunity to release
new micro use cases to end users in small
incremental steps — ideally every single day.

The No-Code Playbook

Delivery
9 | Feedback Collection 10 | Incremental Improvement

Let’s examine in more detail what Everyday Delivery Phase actually looks like. As with the
previous two phases, it is composed of four key stages. Each of these will be described more fully
in the following chapters, but let’s briefly discuss the essential steps.

Breaking it down

Stage 9

Feedback Collection
This stage ensures you have a model in
place to collect regular feedback from
your stakeholders and end users so that in
later stages you can respond to their input
quickly, systematically, and incrementally.
We will provide guidance on how to adopt
an approach that encompasses both user
feedback (backed by data) and system
feedback so that you aren’t letting your
no-code team get too biased by “the squeaky
wheel” or infrequent users.

We will offer a brief review of some of the
most common feedback collection
techniques — from standard techniques
like email surveys and focus groups to more
advanced ones. We’ll review typical mistakes
and suggest best practices on how to engage
and interact with different groups.

Stage 10

Incremental Improvement
This stage starts with developing a constant stream of incremental improvements based
on the feedback collected in the prior stage. We will discuss it using a five-step continuous
improvement model to guide a systematic approach to developing the enhancements. Proper
planning and definition are important to make sure the work is decomposed into micro use
cases. Once defined, the use cases will be developed through the continued use of Kanban to
manage the stream of work. We’ll also discuss important considerations around software testing
and governance that apply to this stage.

159

Introduction to Everyday Delivery 16

Delivery
11 | Everyday Delivery 12 | Application Audit

Stage 11

Stage 12

Everyday Delivery

Application Audit

This stage is all about delivering ongoing
releases of functionality as soon as they are
ready for deployment to end users. Unlike
traditional waterfall or Scrum methodologies,
the use of the Kanban Method promotes
release when ready. We’ll outline the
important components of the Everyday

Delivery approach and offer key tips/practices.
Properly defining and scoping enhancements
into small, granular updates will help with
both dependency management and conflict
resolution. We’ll also discuss considerations to
keep in mind when planning user rollout and
enablement.

This final stage provides ongoing support and management for the developed no-code
applications to ensure their optimal health and fitness over time. This stage includes a range of
key activities including:

1.	 Auditing app performance to remove
feature “bloat” and ensure proper usability
and system responsiveness.

2.	 Auditing the app to watch out for
obsolescence of specific features or even
the end-of-life of the app.

3.	 Reviewing changes in the broader
business process or organization that may
require changes to the app.

4.	 Auditing for changes in internal or
external governance requirements
that may introduce changes into the
governance processes of the application.

5.	 Reviewing app components to assess for
opportunities to harvest functional or
technical components that can be reused
more broadly across
other apps.

The No-Code Playbook

This is a lot to cover, but
we’ll step through each
of these stages in the
following chapters, along
with guidance, examples,
and practical tips that
can be used at each step
along the way.

161

Introduction to Everyday Delivery 16

No-code platforms offer the
opportunity to constantly deliver
value in smaller increments. Just as
we used a different approach for the
Go-Live Phase, it is important to
embrace the methodology for the
Everyday Delivery Phase tailored
specifically for no-code platforms.
You’ll be in a better position to
win a competitive advantage when
you can constantly respond to user
feedback, customer interests, and
market changes.

So, let’s dive into more details,
beginning with the first stage in
the Everyday Delivery: Feedback
Collection.

Final
Takeaways

16Introduction to Everyday Delivery

The No-Code Playbook

“We can’t just sit back and
wait for feedback to be
offered, particularly when
we’re in a leadership role.
If we want feedback to take
root in the culture, we need
to explicitly ask for it.”

Ed Batista

163

Feedback Loop 13

Feedback
 Collection 17
Stage 9

EVERYDAY DELIVERY

The No-Code Playbook

The first Go-Live release is a huge milestone, and it’s easy to “take your foot off the gas” and
allow things to coast, but now is the time when you need to keep the momentum going strong!
This starts by collecting feedback. Feedback is an important stage as this is the first time when
the no-code app will likely start having daily usage by real end users who are fully vested in the
app working because it enables them to perform their job function. They will let you know when
the app isn’t working right! View all types of feedback — even if it is critical — as a good thing
because it will help you continue to improve and enhance the app.

It’s now a great time to start building a foundation for achieving perfection and make your
app state of the art. By collecting and accommodating feedback from multiple dimensions, you
empower yourself with data and information to tailor the application to perform at its best. The
feedback provides you with actionable areas of improvement and opens up a lot of “blind spots”
that you now can address. Getting a balanced approach to feedback collection is important. Here
are some tips and best practices for establishing an efficient process.

Feedback Basics
First, let’s start by identifying three types of feedback inputs that we should be focused
on collecting at this stage:

Stakeholder feedback

The feedback from the no-code stakeholder is
essential as they are ultimately chartered with
defining success for the app, which should
have been outlined during the Business Use
Case stage. How do they personally view the
app based upon direct use? What feedback
have they received from the teams using the
app? Keep close to the no-code stakeholder —
and perhaps cross-functional leaders in other
groups that use the app — to keep a pulse on
their feedback.

End user feedback

You need to look beyond the no-code
stakeholder, however, and also gather feedback

from the frontline users who use the app
frequently (ideally daily). By listening to end
users, you can collect a much higher volume
of feedback and higher quality of insight since
they are vigorously using the app.

System feedback

Finally, extracting and collecting system data
from monitoring the app is important because
it will help provide a highly objective view
of UX and performance, and it may help
you identify feedback in areas that could go
unnoticed at first by end users. It will also help
prevent feedback bias that may be skewed to a
subset of highly vocal end users.

165

Feedback Collection 17

You’ll want to proactively develop a process
for collecting a blend of data from each of the
above feedback types (we’ll review some of
the more common techniques and tools in the
next section). Relying on just a single form
of feedback can result in blind spots in your
understanding of true system issues or areas
for improvement. The feedback you collect
from different sources will also help you
validate/test the accuracy of the feedback.

Feedback Techniques
The two most common forms of gathering feedback usually start with tried-
and-true classics: email surveys and focus groups.

•	 Email surveys give you a broad way to
collect feedback from your no-code app
user base. Usually, they are easy and low-
cost to prepare and distribute, especially
when using common self-service survey-
building tools. However, getting a high
response rate may be a challenge given
that your user base is focused on getting
their job done and may not be able (or
willing) to pause whatever critical tasks
they are performing to give you feedback.
If you send out a survey, keep it short —
ideally, less than 7 or 8 minutes in
length — focused, and personalized.

•	 Focus groups give you a way to dive
deeper into your end user’s feedback, and
they are a good complement to email
surveys. A well-run focus group will give
you richer qualitative feedback, helping
you understand the “why” behind other
feedback you’ve collected. It’s important
to select the right set of users, though —
identify a cohort of experienced users who
will give you a rich source of insight.

The No-Code Playbook

Here are some additional techniques that you should consider to receive a more diverse and
well-rounded feedback on your no-code app.

User
Shadowing

UX
Questionnaire

Feedback
Widget

Net Promoter
Score

Usage
Analytics

A
p

p
lic

ab
ili

ty

Depth research
on customer
satisfaction

Breadth
research of
customer

satisfaction

Reporting
bugs and

collecting real-
time feedback

Researching
customer

satisfaction
and looking for
improvement
opportunities

Gathering
actual usage of
used features

and user
activity

A
d

va
n

ta
g

es

Greatest level
of data about

actual user
behavior

Unobtrusive,
user-friendly,

and may
include diverse

questions

Activated by
users; gives

users a place
for leaving
feedback

Simple, one-
click design;
quick follow-
ups available

Unobtrusive;
does not

require user
explicit action

D
ra

w
b

ac
ks

 Time-
consuming,

requires effort
to set up and

conduct

Long forms
are usually

unattractive to
users

Targeting
is limited to

pages where
the widget is
implemented

Can be skewed
to really happy
(or annoyed);

does not
provide a lot of

detail

Requires
more work to

synthesize and
interpret

167

Feedback Collection 17

No one of these feedback strategies will give you a complete picture, so it’s recommended to
adopt a multipronged feedback approach to how you gather, analyze, validate and gain insight
into the real-world use of your no-code app.

•	 User shadowing is a qualitative feedback
technique. It is conducted on a small scale
using a defined sample of users who are
observed (often by someone from the
UX team) while using the no-code app
just as they would in real life. The user is
observed for a set period (ranging from
30 minutes to a few hours, depending
upon the scope of the process). Ideally,
the observer tries not to interfere with the
user to avoid deviating from their natural
practices of using the no-code app.

•	 UX questionnaires complement other
types of user surveys. They focus on app
usability and seek to understand the user’s
attitudes and preferences. Was using the
no-code app the first time easy? Which
parts of the app did they find confusing?
This type of survey should avoid diving
into the depth of features and, instead,
focus on impressions of usability. Often,
a UX questionnaire is structured around
user personas with feedback being
grouped and analyzed with a cohort of
similar user types.

•	 Feedback widgets are one of the most
convenient methods for gathering real-
time, quality user feedback. Placing a
feedback widget into the app itself —
often at the far right or bottom of a
form — allows you to interact with your

users within the app, which helps improve
both the completion rate and relevancy of
feedback.

•	 Net Promoter Score (NPS) is a widely
used market research metric first created
by Bain & Company to predict customer
loyalty. However, you may also find it
helpful to use this approach for internal
employee surveys. NPS surveys avoid
survey fatigue by focusing the feedback
on just a single question that is quick and
easy to answer. It helps you keep your
fingers on the pulse of how satisfied users
are with the experience and whether they
would recommend the app to others, such
as coworkers for an internal app.

•	 Usage analytics gather empirical data
on actual app usage. This is important
because it helps avoid subjective bias in
the feedback you may collect from other
sources. Usage analytics can often be
collected from reporting provided by the
no-code platform or sometimes through
other analytics add-ons. This can give you
accurate information on actual feature
adoption, product friction points
(i.e., areas where users get slowed down
or halt entirely), product stickiness (how
frequently users return to the app), and
overall user engagement.

The No-Code Playbook

Key Mistakes
to Avoid
As you implement various programs of
feedback collection, be aware of these
common pitfalls:

Avoid the “squeaky wheel” syndrome

The loudest users may not be the best or most
representative of the user population. Apply a
structured approach to analyzing the overall
feedback (from all three feedback types) to
prevent input from a few users biasing your
view on priorities or decisions.

Avoid infrequent app users

While collecting usability feedback from
casual users is important, they will probably
not give you the same depth of insight on
functionality as “power users” who have
demonstrated frequent activity.

Avoid moving too slowly

Note that the intensity of your feedback
collection (and deployment of updates) plays
a significant role at this stage. The pace of
gathering and responding to feedback should
be equal to the Go-Live cycle. It may include
multiple weekly sessions to collect and analyze
the inputs and get relevant decisions and
approvals.

169

Feedback Collection 17

Feedback collection is essential to
evolving your no-code app, but it’s
important that you’re gathering
the right feedback — through a
combination of stakeholder, user, and
system feedback — while taking a
varied approach to input collection.
Having a complete view of the areas
of improvement for your no-code
app is powerful and is enabled by a
disciplined approach to continuous
feedback collection and using that
insight to evolve the application
rapidly.

Now, what do you do with all the
feedback you’ve collected? Let’s discuss
this next!

17Feedback Collection

Final
Takeaways

The No-Code Playbook

“Continuous improvement
is better than delayed
perfection”

Mark Twain

171

Feedback Loop 13

Incremental
Improvements 18
Stage 10

EVERYDAY DELIVERY

The No-Code Playbook

It’s tempting to focus on achieving perfection
all at once — but that is an unachievable goal.
Instead of trying to address all requirements,
expectations, and suggestions, it’s better to
strive to continuously improve daily based
on real-world feedback. This allows you to
make progress toward your goal while also
continuously learning and adapting along
the way. If you’ve done a good job collecting
recommendations in the previous stage, you
now have a mountain of input from your
stakeholders, users, and the application itself
(system data). You’ve prioritized it carefully
and know the most essential items to tackle
first to deliver enhancements to your app.

Consider the example of a young plant
growing in a garden. If you only examined the
plant every few weeks (or perhaps months),
you would notice big differences. It may
appear to be an entirely different plant each
time you looked at it. You might think the
growth was happening in big spurts. However,
in reality, the plant grows every day — it’s
constantly taking in sunlight and nutrients
from the soil and growing in small amounts
(usually imperceptible to the eye). It never
remains static. The plant is adapting to its
environment and constantly growing and
expanding in response to its surroundings.

Like a living organism, your no-code app also
will be more successful if it takes continual,
rapid steps to adapt to the needs of the
business function. Using the incremental
improvements philosophy can also make
it possible to significantly exceed the
expectations of your stakeholders because
you will be able to respond to their requests
continuously and more rapidly.

In this stage of the
lifecycle, you should
focus on the following
simple steps:

Step #1
Analyze and
decompose use cases

Step #2
Prioritize and approve
micro use cases

Step #3
Review design
considerations

Step #4
Build/test
enhancements

Step #5
Review governance
checks

173

Incremental Improvements 18

Analyze and decompose
use cases
You’ve set the groundwork for this at the
Feedback Collection stage. However, as you
gather more feedback across various channels,
the detail and completeness of feedback
become essential — it’s important to analyze
it to ensure users are sufficiently documenting
their responses and experiences in a way that
is clear and reproducible. You’ll want to tie any
recommendations or decisions back to very
specific and observable feedback and data, not
just some general perceptions.

Just as in prior stages, it’s also very important
to fully decompose the recommended
improvements into micro use cases. It will help
minimize the dependencies across work items
and allow the micro use cases to be worked on
and released independently.

Step #1:

Prioritization of the feedback is also super
important at this step. It’s expected that you
have received a lot of input, and it’s vital to
organize the right decision-making process
based on the value of capabilities. The easiest
way to test your prioritization accuracy is to
check if the selected micro use cases allow you
to achieve the application’s business goals (and
ideally specific KPIs you’ve identified during
the Business Use Case stage). Also, while
you have a backlog of items based on your
prioritization from the last phase, it’s important
to understand that the user feedback you’re

Step #2:

Prioritize and approve
micro use cases

receiving from the live app will likely give you
new and perhaps unexpected learnings. So,
you must maintain an open perspective on the
backlog as you may decide to change priorities.

Finally, in your haste to act on feedback,
don’t forget to have the no-code stakeholder
authorize key changes before you move any
further. Not all feedback is equally important in
priority to the business function, so it’s essential
to review it with the no-code stakeholder.
Just as your no-code stakeholder helped
you prioritize the initial MVP release, they
also need to help with the prioritization and
approval of the ongoing enhancements.

Review design
considerations
Sometimes changes in the original no-code
app design may be necessary after the first
MVP is released. That’s OK! Needs may
evolve and change. Just make sure you think
through the implications those changes may
have on the design. This is especially true with
more significant changes to the process or data
models — those are areas that may have ripple
effects across the application.

As the team moves through the process, you
may encounter new requirements that can
trigger returning to the Options Analysis
stage and reviewing assumptions. For example,
to satisfy the new requirements, you may need
to extend your app with marketplace add-
ons or connectors. These should be managed
carefully because introducing new options into
a production app may result in additional costs
or other impacts.

Step #3:

The No-Code Playbook

Build/test
enhancements
After you have prioritized and approved a set
of items to address from the backlog, the next
step in the incremental improvement cycle
is to begin using the no-code tools to build
these enhancements. The Kanban Method
can continue to be used as a framework
for managing work items post-release, as it
provides transparency to stakeholders about
ongoing progress.

While this step has many similarities to the
Prototype-to-MVP stage, here are some
additional tips and practices to keep in mind:

•	 	Don’t forget to transfer all items you parked
during the Go-Live Phase into a unified
backlog with all the requirements, including the
new ones. You’ve been managing the scope of
MVP carefully up until now, so you have been
building a lot of backlog items for the future —
don’t lose these requests! It will encourage user
engagement (and more feedback) when they
see the feedback that they shared during the
initial MVP addressed promptly post Go-Live.

•	 It’s important that new changes —
even small ones — do not break existing
capabilities within the app. Make sure your
software testing approach addresses new
features and revalidates end-to-end scenarios
that test existing end user features and user
journeys already delivered in the no-code
app. This is important to prevent unwanted
regressions in features or unexpected changes to
app behavior.

Step #4:

New requirements may influence and
change the application’s complexity level,
which should trigger relevant actions around
governance checks as per the Application
Matrix. The new requirements shall be
analyzed using governance complexity
questions. Please note that new governance
checklists may need to be applied. For
example, the additional functionality for
capturing credit card data for a customer
case management app may trigger a need to
undergo PCI DSS compliance. Make sure you
proactively review and assess if the no-code
backlog contains items that may result in new
external or internal compliance verifications:

•	 The roles-based access policies for your
no‑code app will need to be reviewed
periodically to ensure they are appropriately
enforced and controlled. It’s not uncommon
for an app to start with simple user access
permissions because the initial MVP
functionality may be made available to all
users at the start. However, as more specific

Step #5:

Review governance
checks

•	 Automation of API testing may also be worth
considering if there is a risk of the other
applications changing unexpectedly. Those
changes could result in significant impact and
downtime if they occur while your no-code
app is in production. While API automation
requires effort, this can also be a worthwhile
investment to catch and prevent software
defects in no-code integrations (especially
for integrations that may be used in mission-
critical apps or across multiple apps).

175

Incremental Improvements 18

There is a balance to strike here. You need to ensure that appropriate quality and governance
checks are applied without letting the speed of responsiveness grind to a halt!

No-code tools enable a mode of continuous incremental improvement
that will help you evolve and succeed. As discussed in the last chapter, it’s
important to maintain the intensity of your actions at this stage. The pace of
responding to feedback should be equal to the Go-Live cycle and to build
confidence with users that their feedback is being heard and addressed.
Nothing discourages user feedback like the perception that their feedback is
“going nowhere” or that there will be long delays in seeing results. So, take
care to deliver quick and timely updates post-release.

Embrace this model to make your stakeholders and users happy. However,
keep in mind not to get too distracted by chasing immediate perfection!
Instead, focus on delivering incremental improvements every day. This will
be the focus of the next chapter.

Final Takeaways

features are added — especially to address
power user requests — it may be decided that
some features should be restricted, which
may require additional logic and rules to be
enforced within the app. As always, you need
to be careful with access rights to sensitive
data including the ones that might be available
for external users outside your organization.

•	 New security vulnerabilities may be created
if you add new integrations with additional
systems or expose new user interfaces to new
user types (e.g., a self-service portal to new

customers or business partners). In general,
you should periodically review the backlog
of planned enhancements with your security
team to proactively identify areas that may
require new approvals.

•	 Data governance checks are still vital to review
how sensitive corporate data is managed
and secured. As you continue to evolve the
no-code app and add new features, it’s not
uncommon to begin collecting new types of
data, which may trigger new data governance
requirements.

The No-Code Playbook

“Our highest priority is
to satisfy the customer
through early and
continuous delivery of
valuable software”

Principles behind
the Agile Manifesto

177

Feedback Loop 13

Everyday
Delivery 19
Stage 11

EVERYDAY DELIVERY

The No-Code Playbook

One of the key principles behind Agile is the
notion of continuous delivery of value. Yet,
too often in traditional software development,
we get stuck in having to conform to
defined release sprints or iterations. A key
differentiation of the no-code approach is
accelerated time-to-market. The modern
platform capabilities empower no-code teams
to deliver sufficient outcomes daily to end
users.

The spirit of the Everyday Delivery stage
is striving to provide rapid updates to the
end user and maintaining a high velocity
and ongoing improvement cycle. The
deployment can be based on a specific

feature or set of features without a need to
connect it to a specific sprint deadline or
other formal milestones. To establish this
mode of continuous delivery, it’s critical to
appropriately decompose and scope your
work items so that you can rely on the higher
degree of deployment automation provided by
no-code platforms. This allows for quick, small
updates to be pushed to production frequently
(perhaps daily) while maintaining higher
levels of quality than traditional “big bang”
software releases.

Let’s dive into discussing the Everyday
Delivery stage by defining what it is and what
you should focus on at this stage.

179

Everyday Delivery 19

Components of Everyday Delivery
Let’s start understanding the common elements that enable this breakthrough release strategy:

No-code tools

As might be expected, no-code tools are at the
foundation of the Everyday Delivery strategy.
No matter how powerful traditional custom
development tools are, just the act of writing
custom code means that daily releases are
unlikely (lower-level coding and unit testing
alone impedes this pace of delivery). So, the
speed and productivity you receive from
no-code tools facilitate this rapid Everyday
Delivery approach.

Continuous deployment

In Chapter 15 (First Release), we initially
introduced the approach of fully automating
the movement of no-code applications across
environments and into production. This
remains key to Everyday Delivery as any
manual steps in the deployment process will
result in additional time, effort, and risk.

Fast rollback

A “rollback” is the ability to revert an
environment to an earlier known state if you
find that a change is not working as expected.
This allows you to undo a problematic
set of updates so that users can continue
using the application as it was previously.
At the same time, you troubleshoot and
correct whatever problem was introduced.
Rollback can typically be addressed either
by the deployment automation in the
no-code platform (if it can undo or reverse
deployments) or possibly through a dedicated
staging environment (mirroring the last
production environment before a change is
being released). Fast rollback gives you the
confidence to move quickly in the Everyday
Delivery approach because you know you can
always return to an earlier configuration if
needed.

Defining Everyday Delivery
As the name implies, the goal of the Everyday Delivery stage is to deliver value “every day.”
At first, this may seem obvious — isn’t delivering value the goal of any software development
team? Ideally, yes, but we all know it can be incredibly difficult to release enhancements daily,
especially when using traditional software development methods. Delivering value at speed
requires a fundamentally different approach. But once you adopt the approach that allows daily
enhancements, you’ll see how it results in incredible advantages, including the ability to change
and innovate at a whole new level.

The No-Code Playbook

Best practice tip:

Here are additional tips and practices for establishing the Everyday Delivery approach.

Appropriate definition and scoping are
essential.

It’s difficult to maintain a speed of release if
the scope of your features is large and cross-
dependent on many other features. Focus on
micro use cases that can be deployed almost
immediately.

Make sure you’re factoring in other
dependencies.

You need to consider whether other teams are
developing components or related features that
your application will need and plan accordingly.
For example, suppose your feature is ready for
delivery and the other remaining features are
not done yet. In that case, the team needs to
find a way to separate incomplete features (so
they can be delivered in the future) and focus
on deploying the completed ones.

Use the Kanban Method to track micro use
cases.

Using Kanban (explained in Chapter 11) gives
you fine-grained control and visibility over
the work as it flows through the team. It also
provides more flexibility in choosing when
to release — Kanban does not enforce a set
amount of time required for a release. Each
team can release value as soon as they are ready.

When delivering features, follow the same
sequence and engage the same set of
checks and environments as you did during
the Go-Live Phase.

Just because you are moving fast does not
mean you get to skip steps! As outlined in
the previous chapter, the use of appropriate
software testing and governance checks are still
required to have confidence in the release.

It’s important to remember that Everyday Delivery means users will see changes to the app
more frequently. Thus, you should train and enable current users on new features and workflows.
Be sure to communicate any impact that updates may have. Here are some user rollout
considerations:

•	 The no-code team should continuously
update and retrain end users on the
newly-delivered capabilities. It is
recommended that you establish a
consistent and engaging process for
informing and training users on these
changes. Avoid overreliance on email,
which can be missed or not read as new
users join the organization.

•	 The new feature changes can fall into one
of the following categories:
•	 System changes/invisible changes (usually

don’t require informing/training).
•	 Changes that are intuitively

understandable (require minimal
informing/training).

•	 Drastic changes that impact the flow
and experience (require an effort for
informing/training).

181

Everyday Delivery 19

No-code platforms offer the opportunity to adopt a model of Everyday
Delivery — allowing you to deliver features to your end users daily. This
increases user satisfaction (by consistently and rapidly responding to their
feedback) and improves user adoption (by reducing the impact of massive
changes, instead introducing a smaller set of more easily adopted updates).
However, it’s important to correctly scope and decompose for a successful
release and apply the right model for managing user enablement and
rollout.

Now, we’re nearly done — we’re about to finish off the No-code Lifecycle
with the final stage: The Application Audit stage.

Final Takeaways

•	 These first two categories may require
updates via prompts within the app. More
drastic changes that require understanding
a new flow or experience should be
assessed and enablement as necessary.
This could range from a short video demo
to in-person instruction.

•	 The release of a new feature should be in
sync with the overall end user experience
and impact on their process. Don’t change
the app before instituting any released
process changes (or vice versa). All the
changes should be coordinated to be
rolled out together, along with applicable
user enablement.

•	 Scoping of feature size is key here as well.
Smaller “bite-sized” updates are typically
easier for users to consume and lessen the
change management impact. Consider
aligning more significant changes into
batches where user enablement and
process changes can be rolled out.

The No-Code Playbook

“What gets measured
gets done, what gets
measured and fed back
gets done well, what gets
rewarded gets repeated”

John E. Jones III

183

Application Audit 20

20

EVERYDAY DELIVERY

Application
Audit

Stage 12

The No-Code Playbook

Auditing App
Performance
We probably have seen “bloat” happen in our personal health — maybe you eat too many
unhealthy snacks, perhaps some unnecessary desserts, and you start putting on some unplanned
(and unwanted) weight! This happens with apps as well — over time, it’s not unusual for
applications to experience “feature bloat” as more requirements are slowly added to the
application. The impact may not be that unwieldy at first, but after a while, the aggregate impact
of adding requests may result in additional (and perhaps unnecessary) complexity.

Complexity due to aggregate features can manifest itself in the app in several ways:

Like any living organism, apps will take on a life of their own. They will evolve and change over
time. While an app may have perfectly fit all business and organizational needs initially, as the
business process changes (and you continue to release daily updates), it should be reassessed
periodically to understand whether it is still delivering on the expected outcomes. Therefore, it’s
essential to establish an effective approach and cadence for measuring the impact and evolution
of your no-code app, as well as provide support and management as needed to optimize its
health and fitness over time. We’ll refer to this as the Application Audit stage.

Initially, the Application Audit is likely performed by the no-code team and is reported to the
no-code stakeholder. However, as the number of no-code apps increases and as you develop
more business-critical apps, the audit function generally will become part of the responsibilities
of the Center of Excellence. This will help look across the organization to measure and improve
overall levels of efficiency, effectiveness, and business impact. It will also help identify reusability
opportunities (a key concept we’ll address shortly). However, regardless of who performs the
audit, it’s important not to miss any key steps. So, we will briefly introduce some of the key
activities that should be included and some considerations for each.

•	 First, it can increase the perceived
complexity of the existing UX. The app
might have been very simple and intuitive
at MVP, but now forms or workflows
have evolved and expanded and may have
many more fields or steps than needed.
Reviewing the UX and evaluating parts of
the user journey that may need optimizing
or refactoring for simplicity are important.

•	 Adding new features may also begin
to impact the responsiveness of the
app. It’s important to continue closely
monitoring performance metrics around
the application (e.g., launch times, display
times, and moving between pages) and
identify areas that may require specialized
performance tuning and optimization.

185

Application Audit 20

Your team that manages operations should usually be able to help with the system performance
tracking by providing health metrics on performance or downtime as part of their standard
reporting. Tracking over time should help identify if there are possible concerns to address.
Usability performance problems are sometimes harder to spot. Some of the techniques discussed
in the Feedback Collection stage (e.g., user shadowing and UX questionnaire) can be good early
warning signs that you may need to refresh or streamline the end-user experience.

•	 It may not always be the visible feature complexity that starts to slow an app — it may also
be a result of the additional user or data growth that happens over time. These volumes
may put unplanned stress on the database or application services. It could be necessary to
archive older data or take on more technical optimization at a database level to ensure that
performance stays “fit” as your volumes grow.

Auditing
Obsolescence
Another important consideration is feature
obsolescence. Over time, some features in
the app may no longer be applicable (given
changes in the process or requirements)
and may need to be removed or refactored.
It’s easy to forget to continue to review the
app periodically for these types of outdated
features, and it’s also easy to let things go
unused for periods. However, the cleanup of
unused or unneeded features will help keep
the app “fresh” and usable for the user.
The audit team needs to analyze all the
redundant features (clutter) that have become
irrelevant. The ongoing feature cleansing
process should be applied. This is important to
reduce the “noise” for end users and keep the
user experience efficient and productive.

Obsolescence will ultimately also happen to
the no-code app itself. It’s also OK for apps
to run their natural course. Eventually, any
application will reach “End of Life” (EOL).
At this stage, it’s important to retire or
decommission the app, which is a natural part
of the lifecycle and makes the path clear for
new apps and workflows.

The review and decommissioning of
obsolescent apps may sometimes be sporadic
if left to the no-code team, especially if the
original no-code team has moved on to other
projects or parts of the company over time.
For this reason, the evolution of your apps
across the portfolio is often managed/enforced
by the CoE. They should be responsible (when
existing) for systemic review of the application
portfolio to maintain health and relevancy.

The No-Code Playbook

Organizational Changes
Another key type of change that should be
anticipated is linked to the environmental
factors surrounding the app itself. The
business may have changed, the process may
have changed, or both, so it’s important for
the no‑code app features to be reviewed for
needed updates or, potentially, for feature
removal. While not always easy to spot, the
no-code team (or CoE) will need to monitor
to see if no-code app changes may be required.

There may be changes in operational processes
that are touching automation. The design
of the no-code app has made assumptions
about what operational workflow occurs.
Therefore, as process change occurs, it may
fundamentally change the organization of the
workflow and UX within the app as well.
It may be necessary to make changes to align
better with the new operational processes and
procedures.

Changes in organizational structures may
also have unintended impacts on the no-code
app. Changes to reporting or organization
boundaries may trigger user workflow or
navigation updates. Splitting teams into
another organization may require updates
to user access permissions. So, while app
changes are often not considered when an
organizational change is made, they must
ultimately be synchronized so that the app
supports the team(s) and employees who will
be using it.

It’s recommended to review the scheduled
proactive audits of the process/organization
and not simply rely on reacting to changes
as they occur. Depending upon the business
complexity (as guided by the Application
Matrix), you should schedule more or less
frequent reviews to ensure that the app stays
aligned with the process and organization.
It is advised to schedule most Simple apps for
annual reviews, and Medium/Complex apps
should likely be checked quarterly depending
on the pace of changes they may be facing.

187

Application Audit 20

Auditing Governance
Changes
In Chapter 14 (Governance Checks)
we discussed identifying and proactively
scheduling the appropriate governance
reviews as a part of the lifecycle or as part of
an annual cadence. However, while this has
been planned upfront (in concert with IT or
Data Governance teams), don’t overlook the
possibility of changes in external or internal
requirements that may trigger you to reassess
the type and frequency of checks. For example,
there may be changes in federal regulations
enacted that make it mandatory to comply
with a new set of rules. Or perhaps your
internal Data Governance organization adds
a new data privacy policy that may require
limiting access to data types. Regardless
of whether this is externally or internally
triggered, the no-code development team
will need to review the app for possible new
checklist reviews.

As with the process/organization changes, it’s
advised to collaborate with the Governance
or IT teams and have a proactive schedule for
routinely assessing which internal or external
governance requirements may have changed.
Governance checks may need to be done more
often considering regulations and legislative
requirements changes. The necessary
frequency may vary widely depending upon
your industry or business environment,
as will the cost or impact of accidentally
missing new governance requirements. So,
you’ll need to determine the right cadence
for assessing major new external or internal
governance updates. Generally, it’s advised to
set the appropriate audit cycles for governance
based on the different complexity/criticality
levels as per the Application Matrix.

The No-Code Playbook

Auditing Component
Reusability
As discussed earlier during the Design Phase, one of the strategic benefits of using no-code
platforms is embracing the composable architecture. As no-code apps are built, there will likely
be various components developed in each app that fill another need and can be suitable for reuse.
So, during the Application Audit stage, you should formalize a process that identifies functional
or technical components that might have broader benefits and impact on the organization if
reused.

This type of audit can be performed by the no-code team, but as adoption grows across the
organization, this will most likely be part of the CoE’s responsibility. As part of the CoE
charter, it is recommended that you include the following activities to provide a strategic role in
reviewing/curating components:

•	 The CoE should take a leadership role
across teams to establish a standard process
for assessing the applicability of reuse for
functional and technical features.

•	 The CoE will help promote broader
visibility/discovery of available components
through establishing an internal catalog or
marketplace-type function.

•	 To effectively identify, curate, and
operationalize the component reuse, it
may be required to introduce new roles/
responsibilities (typically within the CoE)
and training around component design,
curation, and reuse. The CoE should help
with the enablement of teams to assist
with the initial use of shared or reusable
components.

•	 The CoE may provide individual
application teams additional assistance to
harvest/repackage for broader reuse. This
can help address concerns that individual
teams may not have the staff/budget/skills
to invest in the additional effort needed
to create a reusable or generic version of
a component.

•	 The CoE should establish standard
reporting and metrics to track reuse
effectiveness. It’s important to avoid a
“Field of Dreams” approach (i.e., “if you
build it, they will reuse … ”) — don’t
assume it will happen but adopt a data-
driven approach to measuring the impact
of component sharing and the success of
demand generation/reuse activities. This
will help target areas where you need to
provide additional direct assistance or
enablement of no-code teams.

189

Application Audit 20

No-code apps have a unique lifecycle
as they evolve over time. As your
no-code usage develops and deepens,
it’s important to have efficient practices
in place to maintain your applications.

These final measurement steps are
key to any continuous improvement
cycle, and the Application Audit stage
ensures that the app stays relevant to
the business.

That’s the last stage in the No-code
Lifecycle! Let’s summarize now a few
more important final considerations
to plan for — beginning with how
and when to build your Center of
Excellence.

Application Audit 20

Final
Takeaways

189

The No-Code Playbook

“It is the long history of
humankind (and animal
kind, too) that those who
learned to collaborate and
improvise most effectively
have prevailed”

Charles Darwin

191

Building Your Center of Excellence 21

Building Your
 Center of
Excellence 21

FINAL TOUCHES

The No-Code Playbook

Establishing the No-code Center of Excellence (CoE) is an evolutionary
approach in most organizations. Rarely is the CoE created and set up
all at once with the initial no-code project. Instead, it’s more often a
result of organic growth and expansion when project teams start to
gain success and experience in using no-code across different parts of
the organization. Evolutionary steps toward no-code maturity allow
the organization to build the business case for broader investment
based upon proven success, allowing the CoE to grow and adapt. This
incremental approach to forming the No-code CoE aligns with the
“Everyday Delivery” philosophy. Start small, target a focused delivery of
an initial CoE capability (think “MVP”), and then collect feedback on
how it is performing so that you can evolve it over time. You can expand
the CoE incrementally as you continue to deliver more no-code projects.
In this manner, the CoE will grow and evolve in alignment with your
successful use of no-code.

193

Building Your Center of Excellence 21

We have previously outlined that the No-code CoE is a go-to option for
many application scenarios. The Application Matrix allows you to define
where exactly you can apply it. In addition to that, the CoE approach is
invaluable to driving efficiency, effectiveness, and overall impact of your
no-code development practices. It can also play a significant role in radiating
the no-code culture within your organization.

This chapter dives deeper into the No-code CoE and outlines how to
establish one inside your organization. We’ll look at the typical evolution of
the CoE and common levels of progressive maturity. We’ll outline seven of
the key capabilities to focus on when you are defining the CoE. However, as
always, this should be merely a starting point and guide that you can tailor to
your unique needs and requirements.

The No-Code Playbook

Excellence
Stage 1 Stage 2

While everyone’s evolution and expansion of the CoE may look slightly different, these are the
stages you can typically expect to see:

The Maturity of
Your No-code CoE

Stage 1 Stage 2

This is the starting point for your No-code
CoE journey. It often starts by establishing
an initial small team of one or two
individuals who may be part-time. The initial
core team begins to assist the organization
by defining the charter of the CoE and
establishing sponsorship within the business
and IT groups. The team also develops the
initial definition of CoE roles and begins to
implement standard processes. At this point,
CoE engagement is usually opportunistic
with individual no-code project teams.
Each team will be engaged and addressed
individually as needs arise.

At this stage, the No-code CoE identifies
and clearly defines critical roles, and starts
to formally assign full-time resources. As a
result of successfully delivering a few simple
apps, the CoE is able to further formalize
the responsibilities of team members and
define a repeatable engagement model for
how the CoE should work with individual
project teams. Then, the CoE establishes
a lightweight guidance model and basic
mechanisms for feedback collection and
auditing for reuse.

195

Building Your Center of Excellence 21

Excellence
Stage 3 Stage 4

Stage 4Stage 3

The No-code CoE is engaging proactively,
consistently, and broadly across the
organization, effectively measuring results,
time to value, and business outcomes. It
now provides support for the full spectrum
of apps ranging from simple to mission-
critical solutions (and has operationalized
the Application Matrix to help teams know
when they need to scale). The No-code
CoE expands its library of Subject Matter
Expertise (SME) services and best practices.
It has implemented formal processes for
enabling a composable architecture, including
establishing processes for identifying,
curating, and reusing components, and
measuring the success of reuse.

The No-code CoE is executing on its
charter and has delivered a robust set of
initial projects, providing expertise to their
project teams. By now, the CoE maintains an
extensive library of best practices, coordinates
reuse around shared components, and guides
teams to develop high-quality solutions that
perform well and are scalable. Delivery best
practices and assets are available and used by
multiple business units. Processes are in place
to measure results, and business outcomes
and successes are reported.

These defined maturity levels are meant as a guide to help internal stakeholders set the right
expectations around the CoE and how it effectively enables and supports the organization. You
want stakeholders to be excited about the vision and potential for the CoE, but they should also
be realistic about where you are in the phased evolution journey.

The No-Code Playbook

Supporting this high-level framework, your CoE should invest in a set of important capabilities
that enable and support each of these dimensions:

These key CoE capability areas are briefly described in the sections below.

Framework for No-code CoE
When forming your CoE, it’s helpful to begin with a framework that addresses the dimensions
of People, Processes, and Technology.

People

A core part of the No-code CoE is providing
the expert resources that support the rest of
the organization. The CoE resources will offer
a deep knowledge of the business processes,
technical expertise, and no-code delivery
methodology.

Processes

Building a repeatable and scalable model for
no-code delivery across the organization is
built around the formalization and sharing of
prescriptive best practices. The CoE will play

a key role in continuous learning from each
project’s success, applying the most successful
practices, and monitoring the industry.

Technology

Delivering transformation with no-code at
scale requires a capable, reliable, and secure
platform for no-code development. It must
meet current needs and, importantly, be able
to accommodate future demand. The CoE will
play a key role in establishing and evolving
the technology platform, including managing
shared environments and operational
know-how.

Dimension Essential CoE capabilities

People
•	 Form a strong foundational CoE team

•	 Establish a lightweight, consistent governance model

Processes
•	 Evolve clear process best practices and design principles

•	 Continuous process improvement

Technology

•	 Establish reliable, secure, and scalable technology environments

•	 Curate library of internal reusable components

•	 Advocate no-code as part of your digital transformation strategy

197

Building Your Center of Excellence 21

Form a strong
foundational CoE team
The key roles typically found in a foundational CoE
are described in Chapter 4. It is worth repeating,
however, that the CoE will not own all the roles
directly but will typically provide resources in a
matrixed organizational model — i.e., most of the
key roles will still be driven by the business unit.
Still, some specialized no-code roles may sit within
the CoE. However, the CoE resources usually have
a dotted-line reporting relationship with the overall
business unit owner as a part of the development
project.

Regardless of where the resources sit, the CoE
plays an important role in managing the processes
of recruiting, educating, certifying, and developing
no-code creators and architects. The CoE should
define the target profiles, including the specification
of competencies and responsibilities for each
role. Cultural fit is critical too: it is important to
recruit individuals for the CoE who have the right
technical and functional expertise and embrace
the right cultural values around innovation.
They must also be comfortable taking risks. The
no-code project teams will be moving with speed
and focus on Everyday Delivery, which requires
an appetite for some calculated risks and a passion
for driving innovation in new ways. With no-code,
you can experiment and try new ideas. The team
must be comfortable with trying new techniques
and evolving its practices through continuous
improvement.

This CoE team will also commonly emerge after
the organization has started building some no-code
expertise from multiple projects. Then, it becomes
attractive to standardize and centralize some
no-code expertise and skills so that they can be
leveraged across teams. You should identify some of
the individuals from early projects and recruit them

Capability #1:

In Chapter 14, we discussed the importance of
implementing governance practices. While the CoE
is not required for these activities, it can play an
important role in helping the individual no-code
delivery teams navigate through these processes
confidently, especially for teams that may not have
prior experience in these internal and external
governance practices. As the volume of no-code
projects grows, the CoE will also play an important
role in helping these governance activities scale and
be performed consistently across the organization.

The goal of the CoE should be to act as an
enabler for teams to efficiently and quickly
conduct governance reviews. What can they do
to help remove friction and uncertainty about the
governance process? The No-code CoE should
proactively start guiding individual teams early
in the governance process starting at the Design
Phase. This will help improve quality by ensuring
that governance considerations are reviewed and
addressed during the design activities, and it
prevents the need for extensive (and expensive)
rework later in the process.

This CoE governance model should also facilitate
the auditing activities outlined in Chapter 20. As
the no-code application portfolio grows, the CoE
should help provide a consistent mechanism for
reviewing the application portfolio for performance
and obsolescence as well as updates for process and
organization changes.

Capability #2:

Establish a
lightweight, consistent
governance model

into the CoE. Their expertise and learnings as early
no-code project adopters will be invaluable to the
organization at large.

The No-Code Playbook

This No-code Playbook provides a starting point
for building no-code apps. However, as you select
a specific no-code vendor and gain experience in
successfully delivering projects, you will start to
develop additional guidelines and templates for
how to build solutions. Each team that delivers
a no-code project will doubtlessly add some new
ideas or variants to the organization’s knowledge
base, so it’s an opportunity for the CoE to continue
to evolve and improve by harvesting best practices
from each project and sharing them across the
organization. As a result, you’ll achieve greater
impact and efficiencies because you won’t be
reinventing the wheel with every project.

It’s important, however, to recognize that
practices and templates must still be adapted to
the needs of each team or project. Each project
will have unique needs and, therefore, will not
use the same practices. Common best practices
should be adopted and adapted to match the
specific complexity of the application (using the
Application Matrix) and align with the culture of
the team or business group, evolving as the group
matures in its use of no-code.

Finally, don’t overlook the importance of
evangelism and communication of best practices.

The CoE should create an iterative approach to
evolving best practices to ensure everything is
completed the right way, at the right time, and
with the right roles.

In Capability #1 above, we discussed the
importance of fostering a culture of individuals
and teams that embrace an innovation mindset
and are comfortable taking risks. This “growth
mindset” is essential for your ongoing efforts to
improve practices. Outside the core CoE team, you
should also look for ways to promote and reward
this behavior; consider having the CoE give out
rewards and recognition for the project teams or
individuals who have contributed breakthroughs
to core practices. Encourage the project teams
that took risks with a new approach, even though
it might have been unconventional. Building up a
continuous improvement culture takes time, but
with proper encouragement and enablement from
the CoE, it becomes infectious and will begin to
gather its own momentum.

Capability #3: Capability #4:

Evolve clear process
best practices and
design principles

Continuous process
improvement

Establish reliable,
secure, and scalable
technical environments
In Chapter 15 (First Release) we described
the typical set of no-code environments (e.g.,
DEV, QA, and PROD), how they are used, and
the use of the Application Matrix for sizing
according to project requirements. The no-code
team itself is often responsible for its release and
deployment activities, but it can sometimes run

Capability #5:

199

Building Your Center of Excellence 21

We’ve previously discussed the benefits of a
composable architecture and using the Application
Audit stage of the lifecycle to identify components
suitable for harvesting and reuse. While reuse can
sometimes occur based upon self-organized sharing
between projects, the effectiveness of component
reuse goes up exponentially if you make this a
centralized function.

In Chapter 20, this was reviewed in length, but a
few key points bear reinforcement with a focus on
the role of the CoE:

•	 An important element of your component
reuse strategy is facilitating collaboration and
knowledge sharing across teams about the
benefits of reuse and encouraging the exchange
of ideas. The benefits and business value of
component sharing must be promoted broadly
across the organization to help drive the
changes in behavior, instead of each team or
project continuing to operate independently.

•	 The CoE should establish a standard set of
practices during the Application Audit for
assessing the applicability of reuse — this
will include evaluating both functional
and technical features of possible reusable
components. This will help reduce the concerns
that individual teams may not have the staff/
budget/skills to invest in themselves by
providing supplemental help needed to create a
reusable or generic version of a component.

Capability #6:

Curate library of
internal reusable
components

into more complexity, especially as the number
of environments expands. This is where the CoE
may play an important role in facilitating the
underlying no-code platform and environments.

First, the CoE is likely responsible for the
centralized monitoring of the no-code platform
itself, including coordinating with the vendor if
any updates are being applied (e.g., routine security
or platform updates or new feature updates as the
vendor adds capabilities). While these updates
are typically automatic, the CoE may play an
important role in scheduling updates (avoiding
critical milestones for the business) and may also
play a role in ensuring that training or enablement
is rolled out to the project teams.

Second, the monitoring of the individual
environments may be supported centrally by
the CoE for more complex and mission-critical
apps. This may help the individual project teams
ensure that appropriate levels of high availability,
reliability, and performance are achieved by
properly tuning or configuring the no-code
platform environment.

Finally, if any issues are encountered in production,
the CoE may play a centralized role in working
with the no-code vendor to create tickets or
troubleshoot. Again, this may not be as essential
for smaller no-code apps. Still, more mission-
critical apps will need to have a clear service-level
agreement (SLA) in place for any issue resolution
and escalation, including working with the
no‑code vendor to deliver enterprise-grade support
and service.

The No-Code Playbook

Advocate no-code as
part of your digital
transformation strategy

Many organizations will also be taking steps
to define and operationalize their digital
transformation strategy. Don’t think of no-code
as a separate or distinct agenda, instead, connect
it directly to digital transformation. No-code can
operationalize and scale the building of digital
applications across your enterprise. While it’s
possible to pursue digital transformation with
traditional custom development techniques, you
will find that no-code can dramatically accelerate
your ability to bring new ideas for digital
innovation to the market. Explicitly advocating
no-code as part of the digital transformation
toolkit will help you achieve quick wins. It can
also help build momentum and add additional
resources to support the adoption of your no-code
platform and tools.

Capability #7:•	 Keep in mind that effectively identifying,
curating, and operationalizing component reuse
may require the introduction of new roles/
responsibilities — typically within the CoE.
Usually, this is the responsibility of a no-code
business architect. They should help develop
internal training around component design,
curation, and reuse and communicate it to the
rest of the no-code project teams. The CoE
business architect should also help enable
teams to assist with the initial use of shared or
reusable components.

•	 The CoE should help promote broader
visibility/discovery of available components by
establishing an internal catalog or marketplace
of components. You should also look to the
no-code vendor’s marketplace (if one exists) to
identify standard templates or components that
can be reused from there.

•	 Don’t forget the feedback and monitoring loop.
The CoE should establish standard reporting
and metrics to track reuse effectiveness. A data-
driven approach is essential in helping identify
which components may warrant supplemental
investment and where to direct additional
assistance or enablement.

201

Building Your Center of Excellence 21

There’s a lot to think about when
establishing your No-code CoE.
Don’t try to do it all at once. Instead,
embrace an evolutionary approach,
and adopt the “Everyday Delivery”
philosophy to build out your CoE.
Just like developing no-code apps,
your approach to building your
CoE can be to deliver an MVP
and then evolve rapidly based upon
your learnings. Investing in your
No-code CoE will take time, but it
will eventually help accelerate the
delivery of value, and your no‑code
teams will realize even greater
efficiency and productivity.

Building Your Center of Excellence 21

201

Final
Takeaways

The No-Code Playbook

“The essence of strategy is
choosing what not to do”

Michael Porter

203

Feedback Loop 13

Making No‑code
Your Strategy 22

FINAL TOUCHES

The No-Code Playbook

We discuss each of
these major steps in the
following sections

You have started down your no-code journey with plans to build just one or two initial
applications, and you used the No-code Lifecycle to deliver the project successfully.
Congratulations! However, once you move further into building no-code apps, you may find that
you are suddenly a “victim of your success,” with additional requests springing up across different
parts of the business function. This is a great problem to have, of course, but it also means you
now need an overall no-code strategy to govern how you will prioritize the organization’s efforts
and manage the ongoing expansion of your no-code development projects. Trying to handle one
no-code project after the next may not yield the best results.

So, let’s step back. The No-code Lifecycle that we have discussed so far began with the definition
of the business use case. In this chapter, we present what activities may need to precede this to
help provide a strategy for ensuring that your no-code projects target the areas with the largest
return on investment.

Step #1:

Educate and engage
Think of this first step as an internal evangelism and marketing program that promotes the
potential of no-code across your organization. Many business groups will not yet understand
the concepts of no-code or the benefits of this approach, so you’ll want to engage across the
organization to educate them on the no-code vision and start to propose ideas for new areas
of innovation. This may include the following:

Educate the
no-code vision

Group ideas
by type

Qualify
business idea

Engage the
organization

Expand and
elaborate

Prioritize
the pipeline

Step #1:
Educate and Engage

Step #2:
Group and Expand

Step #3:
Qualify and Prioritize

205

Making No-code Your Strategy 22

Internal no-code roadshow

Plan to spend time taking your first no-code
app around to other teams and showing them
the power of no-code tools. They will most
likely be amazed at how much was built in
so little time. Taking a demo-led approach
can be highly effective as groups often need
to see the impact of no-code to fully grasp
the power of what has been accomplished.
Meeting internally with key business and
technology leaders is important to gain buy-in
and generate excitement. Then you can start
collecting their ideas on possible no-code apps.

No-code showcase

It may not be practical to meet with the entire
organization team-by-team, so you should
consider other “viral” approaches to getting the
word out. Putting together a simple “showcase”
of case studies that link the no-code app with key
metrics (e.g., how quickly it was built, benefits
realized) can be an effective strategy that scales
efficiently. Publish the showcase on one of your
internal portals and promote it when it’s shared
across different teams. Developing strong word-
of-mouth about the apps will create buzz!

Internal no-code hackathon

A powerful (and fun) approach is to be creative
and experiential by staging a hackathon to
encourage different teams to try no-code for
themselves. No-code hackathons are facilitated
events where you encourage small teams
(or individuals) to learn new no-code skills
around a facilitated one- or two-day project.
Training is an important part of a hackathon
to give participants a base set of skills. It is also
important to pair them with mentors who can
help design simple apps (typically, mentors are
part of the CoE).

Note that an internal hackathon requires a
fair amount of internal preparation and a
clear sponsor to plan and manage the event,
typically coming from the No-code CoE.
Planning a hackathon is beyond the scope of
this Playbook but there are good resources
(like this guide1) that cover tips and guidance
in more detail.

Step #3:
Qualify and Prioritize

Best practice tip:

You’ll want an easy way to capture ideas that get submitted across any of the above channels, so why
not create a no-code app for conducting an innovation survey? Having a no-code app for surveying
ideas is a fun and visible way to showcase no-code development as part of the strategy and process
for engaging the entire organization. You can likely find an app already in the no-code vendor’s
marketplace (like this2) that allows you to easily conduct the survey.

1 Hackathon Guide
2 Conducting surveys for Creatio, Creatio Marketplace

The No-Code Playbook

Step #2:

Group and expand
This next step will begin to apply some structure across the portfolio of app innovation types.
We propose grouping and aligning the apps into three distinct strategic categories, which help
cluster applications based on their strategic impact on the business function.

This is modeled after principles of Gartner’s Pace Layered Application Strategy3 but applied
to the no-code approach. Recognize that all three of these application types are important and
represent different no-code opportunities and benefits. By grouping your app ideas into these
strategic categories, you realize a balanced approach to your no-code strategy.

As you group items by innovation type, you will likely find that the ideas are unevenly fleshed
out. Some will have more detail, others will have less, and some may even have parts of the
business vision that are unclear. At this stage, you would work with each group to review their
submission and flesh out more detail as needed. Work to add more insights to the idea and
specificity about expected outcomes.

At the end of this first step, the key success criteria are that you’ve generated a lot of internal
excitement and collected many ideas for possible no-code app innovation. However, the ideas
will likely be somewhat raw and unstructured, of different sizes and types, and may duplicate and
overlap. You need to structure them before moving forward — which is the point of this next step.

Systems of Record

These apps will typically use no-code to extend
or augment established packaged software or
homegrown systems that support core business
processes and data. The strategic focus of
these types of apps is typically on efficiencies,
often by eliminating unnecessary data reentry
in multiple systems. They may be rolled out
broadly to large numbers of users across the
organization as they are part of core business
processes. They may also handle sensitive
data and be subject to different governance
requirements.

Systems of Differentiation

These apps will use no-code to enable unique
company processes or industry-specific
capabilities. These apps need to be updated
more frequently to accommodate changing
business practices or customer requirements.

Systems of Innovation

These are new no-code applications built
rapidly to address new business requirements
or opportunities. These can sometimes have
shorter lifecycles and be more focused because
they may address areas that are being explored
(often at a departmental level) and have not yet
been addressed by more traditional packaged
applications.

3 Accelerating Innovation by Adopting a Pace-Layered Application Strategy, Gartner

207

Making No-code Your Strategy 22

•	 Communicate
the vision

•	 What are
we trying to
accomplish?

•	 What does a
no‑code app
look like?

•	 What are
the strategic
benefits?

•	 Meet with the
business teams

•	 Publish the
showcase

•	 Plan and
execute a
hackathon

•	 Work with
groups to flesh
out idea

•	 Expand by
adding more
insights and
expected
outcomes

•	 Review
submissions

•	 Qualify if
business
outcomes are
well understood

•	 Qualify if
submissions
are sufficiently
defined

•	 Council reviews
and approves

•	 Best ideas to
move forward
to the Business
Use Case stage

•	 Group by
innovation type

•	 System of
Record

•	 System of
Differentiation

•	 System of
Innovation

Step #3:

Qualify and prioritize
Most sales organizations use the concept of a
“sales funnel” to describe the customer journey
through the sales process, stretching from
early-stage brand discovery to final purchase.
Visualizing the process as a funnel helps
represent that sales opportunities are more
qualified as they pass through the stages in the
process. Opportunities are fewer the further
you move down the funnel, but they become

more highly qualified. This concept of a
prioritization funnel should also apply to your
pipeline of no-code apps as they flow through
the strategic framework. The number of ideas
will get smaller as you progress, but this is
actually OK — the ideas that are making it
into later stages are more highly qualified
and represent higher-impact innovation
opportunities for your organization.

Let’s review the
no-code strategy
framework stages
again using this view:

Educate the
no-code vision

Group ideas
by type

Qualify
business idea

Engage the
organization

Expand and
elaborate

Prioritize
the pipeline

Step #1:
Educate and Engage

Step #2:
Group and Expand

Step #3:
Qualify and Prioritize

The No-Code Playbook

By the time your no-code ideas have
progressed through the pipeline, you will
have identified a set of highly-qualified and
impactful ideas! Take this list and prioritize
it so that you end up with a stack-ranked list
of the top ideas. An important factor for your
prioritization should be how well the ideas
align with and support the key elements of
your business strategy and goals. You should
also assess the ability of the no-code ideas to
improve your competitive position, which can
help you outpace other competitors in the
market, such as by being able to launch new
products or services faster to help attain more
market share.

Now, you are ready to take each of these and
review it with your executive leadership that
has sponsored no-code at your enterprise.
Have them review the list and get explicit
approval to move forward with the top ideas
and develop the business use cases.

209

Making No-code Your Strategy 22

Preparing an overall strategy for
your no-code app portfolio is a more
advanced concept after you have
successfully built the momentum of
different groups using no-code. But
investing in a strategic framework
that enables the continued inception
and collection of ideas helps you
group and align your portfolio and,
ultimately, prioritize and approve the
best ideas to move forward, which is
important as your portfolio scales.

22

Final
Takeaways

Making No-code Your Strategy

The No-Code Playbook

Acknowledgements

This book would have never been created without the thoughtful
leadership of Andie Dovgan, Creatio’s Chief Growth Officer.
Thank you for driving the creative process forward, your never-ending
optimism and trust in our team, your bright ideas, and your selfless
support at every step of the journey.

Huge thanks to the research and development (R&D), innovation,
and project leaders. Lena, Ivan, Vitaliy, and Anton, your immense
experience in the no-code space, deep understanding of every concept
outlined in the book, and ability to leave no stone unturned have
inspired us!

The team that has orchestrated the process, edited, corrected, and,
finally, published the book by investing great effort, time, and
sleepless nights — you are our heroes! Vlad, Kate, and Julia —
without your hard work, we wouldn’t have accomplished this mission.

Constantin, Nina, and the team of designers — your talent for
bringing ideas to life through art is truly special. We’re big fans of
your creations. Thank you for being a major part of this journey!

Thank you, Ginny, editor and reader advocate, for your brilliant mind.
Thank you, Brandon, for your insightful comments and feedback.

The whole Creatio Community — your excitement about the book,
plus your contributions and collaboration, made this book even better
than we could have ever imagined!

211

Feedback Loop 13

The No-Code Playbook

Business book

Katherine Kostereva
Burley Kawasaki

The No-Code Playbook
2022
1st edition

Chief Editor: Andie Dovgan
Editor: Virginia Holden
Corrector: Mark Baker
Art Director: Konstantin Nesyn

The No-Code Playbook is a vendor-agnostic guide that empowers teams to deliver business applications of any complexity

with no-code.

The No-Code Playbook includes illustrations from the Freepik website designed by Sky and Glass, zoni39007, macrovector,

mulyasriwahyuni, katerina51, rawpixel.com, collayart, and Freepik; from the Shutterstock website designed by Vectorium,

Naci Yavuz, Polina Erofeeva, Orfeev, and ursulamea; from the Envato website.

ISBN 979-8-218-06204-0

All rights reserved

